>> help fminunc

FMINUNC Finds the minimum of a function of several variables.
X=FMINUNC(FUN,X0) starts at X0 and finds a minimum X of the function
FUN. FUN accepts input X and returns a scalar function value F evaluated
at X. X0 can be a scalar, vector or matrix.

X=FMINUNC(FUN,X0,OPTIONS) minimizes with the default optimization
parameters replaced by values in the structure OPTIONS, an argument
created with the OPTIMSET function. See OPTIMSET for details. Used
options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, GradObj,
HessPattern, LineSearchType, Hessian, HessMult, HessUpdate, MaxFunEvals,
MaxIter, DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter,
PrecondBandWidth, TolPCG, TypicalX. Use the GradObj option to specify that
FUN also returns a second output argument G that is the partial
derivatives of the function df/dX, at the point X. Use the Hessian option
to specify that FUN also returns a third output argument H that
is the 2nd partial derivatives of the function (the Hessian) at the
point X. The Hessian is only used by the large-scale method, not the
line-search method.

X=FMINUNC(FUN,X0,OPTIONS,P1,P2,...) passes the problem-dependent
parameters P1,P2,... directly to the function FUN, e.g. FUN would be
called using feval as in: feval(FUN,X,P1,P2,...).
Pass an empty matrix for OPTIONS to use the default values.

[X,FVAL]=FMINUNC(FUN,X0,...) returns the value of the objective
function FUN at the solution X.

[X,FVAL,EXITFLAG]=FMINUNC(FUN,X0,...) returns a string EXITFLAG that
describes the exit condition of FMINUNC.
If EXITFLAG is:
 > 0 then FMINUNC converged to a solution X.
 0 then the maximum number of function evaluations was reached.
 < 0 then FMINUNC did not converge to a solution.

[X,FVAL,EXITFLAG,OUTPUT]=FMINUNC(FUN,X0,...) returns a structure
OUTPUT with the number of iterations taken in OUTPUT.iterations, the number of
function evaluations in OUTPUT.funcCount, the algorithm used in
OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations, and the first-order optimality (if used) in OUTPUT.firstorderopt.

\[[X,FVAL,EXITFLAG,OUTPUT,GRAD] = \text{FMINUNC}(\text{FUN},X0,...) \] returns the value of the gradient of FUN at the solution X.

\[[X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = \text{FMINUNC}(\text{FUN},X0,...) \] returns the value of the Hessian of the objective function FUN at the solution X.

Examples
FUN can be specified using @:
\[X = \text{fminunc}(@\text{myfun},2) \]

where MYFUN is a MATLAB function such as:

function \(F = \text{myfun}(x) \)
\[F = \sin(x) + 3; \]

To minimize this function with the gradient provided, modify the MYFUN so the gradient is the second output argument:
\[\text{function } [f,g] = \text{myfun}(x) \]
\[f = \sin(x) + 3; \]
\[g = \cos(x); \]
and indicate the gradient value is available by creating an options structure with OPTIONS.GradObj set to ‘on’ (using OPTIMSET):
\[\text{options} = \text{optimset}('\text{GradObj}', 'on'); \]
\[x = \text{fminunc}('\text{myfun}',4,\text{options}); \]

FUN can also be an inline object:
\[x = \text{fminunc}(\text{inline}('\sin(x)+3'),4); \]

See also OPTIMSET, FMINSEARCH, FMINBND, FMINCON, @, INLINE.
Example 1

Minimize the function $y = \frac{1}{4} x^4 - x^3 + x^2 + 2$.

Note the derivative of y w.r.t. x is $g = x^3 - 3x^2 + 2x$, which is equal to zero for -1, 0 and 2.

```matlab
function xn=example1(x0)
x=-2:.1:3;
y=(1/4)*x.^4-x.^3+x.^2+2;
g=x.^3-3*x.^2+2*x;
[x;y;g]
plot(x,y)
axis([-2 3 0 5])

options=optimset('Diagnostics','on','Display','iter','GradObj','off','Hessian','off',...
                'LargeScale','off','DerivativeCheck','on','TolFun',1E-8);
[xn,fval,exitflag,output,grad] = fminunc('func1',x0,options)
if exitflag ~= 1
    xn,fval,exitflag,output,grad,error('convergence error')
end

function f=func1(x)
f=(1/4)*x^4-x^3+x^2+2;
```
MATLAB Chapter 4

>> xn=example1(-3)

ans =
Columns 1 through 8
-1.0000 -0.9000 -0.8000 -0.7000 -0.6000 -0.5000 -0.4000 -0.3000
 4.2500 3.7030 3.2544 2.8930 2.6084 2.3906 2.2304 2.1190
-6.0000 -4.9590 -4.0320 -3.2130 -2.4960 -1.8750 -1.3440 -0.8970

Columns 9 through 16
-0.2000 -0.1000 0 0.1000 0.2000 0.3000 0.4000 0.5000
 2.0484 2.0110 2.0000 2.0090 2.0324 2.0650 2.1024 2.1406
-0.5280 -0.2310 0 0.1710 0.2880 0.3570 0.3840 0.3750

Columns 17 through 24
 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3000
 2.1764 2.2070 2.2304 2.2450 2.2500 2.2450 2.2304 2.2070
 0.3360 0.2730 0.1920 0.0990 0 -0.0990 -0.1920 -0.2730

Columns 25 through 32
 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000
 2.1764 2.1406 2.1024 2.0650 2.0324 2.0090 2.0000 2.0110
-0.3360 -0.3750 -0.3840 -0.3570 -0.2880 -0.1710 0 0.2310

Columns 33 through 41
 2.2000 2.3000 2.4000 2.5000 2.6000 2.7000 2.8000 2.9000 3.0000
 2.0484 2.1190 2.2304 2.3906 2.6084 2.8930 3.2544 3.7030 4.2500
 0.5280 0.8970 1.3440 1.8750 2.4960 3.2130 4.0320 4.9590 6.0000

Diagnostic Information

Number of variables: 1

Functions
Objective: \((1/4)x^4-x^3+x^2+2\)
Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)

Algorithm selected
medium-scale: Quasi-Newton line search

Diagnostic Information
<table>
<thead>
<tr>
<th>Iteration</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Step-size</th>
<th>1st-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>58.25</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>18</td>
<td>0.016667</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6.93827</td>
<td>1</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3.36258</td>
<td>1</td>
<td>4.26</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2.34035</td>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>2.06774</td>
<td>1</td>
<td>0.642</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>2.00896</td>
<td>1</td>
<td>0.206</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>2.00054</td>
<td>1</td>
<td>0.0475</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>2.00001</td>
<td>1</td>
<td>0.00553</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>0.000184</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>7.15e-007</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td>2.98e-008</td>
</tr>
</tbody>
</table>

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

\[
x_n = -2.4513 \times 10^{-9}
\]

\[
fval = 2
\]

\[
extflag = 1
\]

\[
output =
\]

\[
\text{iterations: 11}\n\]
\[
\text{funcCount: 24}\n\]
\[
\text{stepsize: 1}\n\]
\[
\text{firstorderopt: 2.9802e-008}\n\]
\[
\text{algorithm: 'medium-scale: Quasi-Newton line search'}\n\]

\[
grad = -2.9802e-008
\]

\[
ans = -2.4513e-009
\]
short function:

function myfunc1(x,x0)
f=(1/4)*x.^4-x.^3+x.^2+2;
g=x.^3-3*x.^2+2*x;
subplot(1,2,1);plot(x,f)
ylabel('f');xlabel('x')
subplot(1,2,2);plot(x,g,x,(x-x))
ylabel('df/dx');xlabel('x')
xvalue=fminunc(inline('(1/4)*x.^4-x.^3+x.^2+2'),t)

>>x=-1:.1:3
>>myfunc1(x,-1)

xvalue=
 -1.1102e-016

Same plot

Remark: in the MATLAB output the x-axes are restricted to (-1,3).
Example 2

Minimize the function \(f(x) = (x_1^2 - x_2)^2 + (1-x_1)^2 \).

function xn=example2(x)
options=optimset('Diagnostics','on','Display','iter','GradObj','off',
 'Hessian','off','LargeScale','off','DerivativeCheck','on','TolFun',1E-8);
[xn,fval,exitflag,output,grad] = fminunc('func2',x,options)
if exitflag ~= 1
 xn,fval,exitflag,output,grad,error('convergence error')
end

function [f,g]=func2(x)
f=(x(1)^2-x(2))^2+(1-x(1))^2;

>> xn=example2([.5 .5])

Diagnostic Information

Number of variables: 2

Functions
Objective: func2
Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)

Algorithm selected
medium-scale: Quasi-Newton line search

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
xn =
 1.0000 1.0000

fval =
 2.7754e-015

exitflag =
 1

output =
 iterations: 9
 funcCount: 33
 stepsize: 1
 firstorderopt: 1.0337e-010
 algorithm: 'medium-scale: Quasi-Newton line search'
 message: [1x85 char]

grad =
 1.0e-009 *

 -0.1034
 0.0496

xn =
 1.0000 1.0000
Example 3: Use of gradients

function xn=example3(x)
options=optimset('Diagnostics','on','Display','iter','GradObj','on',
 'Hessian','off','LargeScale','off','DerivativeCheck','on','TolFun',1E-8);
 [xn,fval,exitflag,output,grad] = fminunc('func3',x,options)
if exitflag ~= 1
 xn,fval,exitflag,output,grad,error('convergence error')
end

function [f,g]=func3(x)
f=x(1)^2-x(1)*x(2)+x(2)^2;
g(1)=2*x(1)-x(2);
g(2)=-x(1)+2*x(2);

>> xn=example3([5 2])
xn =
 1.0e-008 *
 0.2455 -0.1534

fval =
 1.2143e-017

exitflag =
 1

output =
 iterations: 8
 funcCount: 11
 stepsize: 1
 firstorderopt: 6.4432e-009
 algorithm: 'medium-scale: Quasi-Newton line search'
 message: [1x85 char]

grad =
 1.0e-008 *
 0.6443
 -0.5522

xn =
 1.0e-008 *
 0.2455 -0.1534
Examples 4 and 5: Factor Analysis

Assume we have 4 variables and want to fit a one factor model. In the example here the sample size is 649. So the model equations are

\[\Sigma = \lambda \lambda' + \Psi, \]

where \(\Psi \) is a diagonal matrix.

Furthermore, the least squares function can be written as

\[f = \sum_{i=1}^{p} \sum_{j=1}^{p} (s_{ij} - \sigma_{ij})^2 = tr(S - \Sigma)^2 \]

The vector “\(x \)” in MATLAB contains here first the 4 factor loadings and then the 4 error variances.

```matlab
function example4
S = [86.3979 57.7751 56.8651 58.8986; ... 57.7751 86.2632 59.3177 59.6683; ... 56.8651 59.3177 97.2850 73.8201; ... 58.8986 59.6683 73.8201 97.8192]
x = rand(1, 8)
options = optimset('Diagnostics', 'on', 'Display', 'iter', 'GradObj', 'off', ... 'Hessian', 'off', 'LargeScale', 'off', 'DerivativeCheck', 'on', 'TolFun', 1E-8);
[xn, fval, exitflag, output, grad] = fminunc('func4', x, options, S)
if exitflag ~= 1
    xn, fval, exitflag, output, grad, error('convergence error')
end
'solution'
LAB = xn(1:4)'
PSI = diag(xn(5:8))
fval

function f = func4(x, S)
LAB = x(1:4)'
PSI = diag(x(5:8))
SIG = LAB*LAB' + PSI
f = trace((S-SIG)^2);
```
MATLAB Chapter 4

>> example4

S =
86.3979 57.7751 56.8651 58.8986
57.7751 86.2632 59.3177 59.6683
56.8651 59.3177 97.2850 73.8201
58.8986 59.6683 73.8201 97.8192

x =
0.8214 0.4447 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057

Diagnostic Information
Number of variables: 8

Functions
Objective: func4
Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)

Algorithm selected
medium-scale: Quasi-Newton line search

First-order
Iteration Func-count f(x) Step-size optimality
0 9 77691.1
1 36 2900.05 0.010089 781
2 63 2597.36 0.0134495 350
3 81 2500.67 0.12305 6 49.2
4 99 1729.6 0.14 84 758
5 117 973.247 0.1484 125
6 126 252.255 1 472
7 144 158.88 0.1 125
8 153 116.702 1 26
9 162 116.259 1 3.5
10 171 116.242 1 0.636
11 180 116.229 1 1.78
12 189 116.173 1 6.07
13 198 116.092 1 9
14 207 115.989 1 8.47
15 216 115.937 1 3.98
16 225 115.927 1 0.677
17 234 115.926 1 0.0216
<table>
<thead>
<tr>
<th>Iteration</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Step-size</th>
<th>First-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>243</td>
<td>115.926</td>
<td>1</td>
<td>0.0206</td>
</tr>
<tr>
<td>19</td>
<td>252</td>
<td>115.926</td>
<td>1</td>
<td>0.0272</td>
</tr>
<tr>
<td>20</td>
<td>261</td>
<td>115.926</td>
<td>1</td>
<td>0.0416</td>
</tr>
<tr>
<td>21</td>
<td>270</td>
<td>115.926</td>
<td>1</td>
<td>0.0508</td>
</tr>
<tr>
<td>22</td>
<td>279</td>
<td>115.926</td>
<td>1</td>
<td>0.0434</td>
</tr>
<tr>
<td>23</td>
<td>288</td>
<td>115.926</td>
<td>1</td>
<td>0.0195</td>
</tr>
<tr>
<td>24</td>
<td>297</td>
<td>115.926</td>
<td>1</td>
<td>0.00316</td>
</tr>
<tr>
<td>25</td>
<td>306</td>
<td>115.926</td>
<td>1</td>
<td>0.00285</td>
</tr>
<tr>
<td>26</td>
<td>315</td>
<td>115.926</td>
<td>1</td>
<td>0.00271</td>
</tr>
<tr>
<td>27</td>
<td>324</td>
<td>115.926</td>
<td>1</td>
<td>0.00255</td>
</tr>
<tr>
<td>28</td>
<td>333</td>
<td>115.926</td>
<td>1</td>
<td>0.00251</td>
</tr>
<tr>
<td>29</td>
<td>342</td>
<td>115.926</td>
<td>1</td>
<td>0.00195</td>
</tr>
<tr>
<td>30</td>
<td>351</td>
<td>115.926</td>
<td>1</td>
<td>0.000894</td>
</tr>
<tr>
<td>31</td>
<td>360</td>
<td>115.926</td>
<td>1</td>
<td>0.000338</td>
</tr>
<tr>
<td>32</td>
<td>369</td>
<td>115.926</td>
<td>1</td>
<td>5.84e-005</td>
</tr>
<tr>
<td>33</td>
<td>378</td>
<td>115.926</td>
<td>1</td>
<td>5.16e-006</td>
</tr>
</tbody>
</table>

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

\[
x_n = \\
\quad 7.1752 \quad 7.3601 \quad 8.2932 \quad 8.4502 \quad 34.9144 \quad 32.0915 \quad 28.5079 \quad 26.4140
\]

\[
fval = \\
\quad 115.9256
\]

\[
extiflag = \\
\quad 1
\]

\[
output = \\
\quad \text{iterations: 33} \\
\quad \text{funcCount: 378} \\
\quad \text{stepsize: 1} \\
\quad \text{firstorderopt: 5.1630e-006} \\
\quad \text{algorithm: 'medium-scale: Quasi-Newton line search'}
\]

\[
grad = \\
\quad 1.0e-005 * \\
\quad -0.0665 \\
\quad -0.0648 \\
\quad -0.2415 \\
\quad 0.0113 \\
\quad 0.4698 \\
\quad -0.1189 \\
\quad 0.0167 \\
\quad -0.5163
\]
ans =
solution

LAB =
 7.1752
 7.3601
 8.2932
 8.4502

PSI =
 34.9144 0 0 0
 0 32.0915 0 0
 0 0 28.5079 0
 0 0 0 26.4140

fval =
 115.9256
We now perform a 2 factor model of the form

\[\Sigma = \Lambda \Phi \Lambda^\prime + \Psi, \]

where the matrices have the following form

\[
\Lambda = \begin{pmatrix}
\alpha & 0 \\
\alpha & 0 \\
0 & \beta \\
0 & \beta
\end{pmatrix}
\]

\[
\Phi = \begin{pmatrix}
1 & \rho \\
\rho & 1
\end{pmatrix}
\]

\[
\Psi = \begin{pmatrix}
\gamma & 0 & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & \delta & 0 \\
0 & 0 & 0 & \delta
\end{pmatrix}
\]

In the MATLAB program we define the vector \(x \) as: \(x = (\alpha, \beta, \gamma, \delta, \rho) \). So there are 5 unknown parameters. In the program we start with random start values.

```matlab
function example5
S=[86.3979 57.7751 56.8651 58.8986; ... 57.7751 86.2632 59.3177 59.6683; ... 56.8651 59.3177 97.2850 73.8201; ... 58.8986 59.6683 73.8201 97.8192]
x=rand(1,5)
options=optimset('Diagnostics','on','Display','iter','GradObj','off'....
    'Hessian','off','LargeScale','off','DerivativeCheck','on','TolFun',1E-8);
[xn,fval,exitflag,output,grad] = fminunc('func5',x,options,S)
if exitflag ~= 1
    xn,fval,exitflag,output,grad,error('convergence error')
end
'solution'
LAB=[xn(1) 0;xn(1) 0;0 xn(2);0 xn(2)]
PHI=[1 xn(5);xn(5) 1]
PSI=diag([xn(3) xn(3) xn(4) xn(4)])
SIG=LAB*PHI*LAB'+PSI
S(SIG)
f=func5(xn,S)`
function f=func5(x,S)
LAB=[x(1) 0;x(1) 0;0 x(2);0 x(2)];
PHI=[1 x(5);x(5) 1];
PSI=diag([x(3) x(3) x(4) x(4)]);
SIG=LAB*PHI*LAB'+PSI;
f=trace((S-SIG)^2);

>> example5

S =
  86.3979  57.7751  56.8651  58.8986
  57.7751  86.2632  59.3177  59.6683
  56.8651  59.3177  97.2850  73.8201
  58.8986  59.6683  73.8201  97.8192

x =
  0.8216  0.6449  0.8180  0.6602  0.3420

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Diagnostic Information
Number of variables: 5
Functions
Objective:            func5
Gradient:             finite-differencing
Hessian:              finite-differencing (or Quasi-Newton)
Algorithm selected
medium-scale: Quasi-Newton line search
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
End diagnostic information

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Step-size</th>
<th>First-order optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>77700.6</td>
<td></td>
<td>1.14e+003</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>21337.2</td>
<td>0.00416643</td>
<td>6.56e+003</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>21082.8</td>
<td>0.0431329</td>
<td>9.69e+003</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>5824.02</td>
<td>0.5</td>
<td>3.87e+003</td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td>4887.96</td>
<td>0.091649</td>
<td>1.13e+004</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>2429.54</td>
<td>1</td>
<td>7.31e+003</td>
</tr>
<tr>
<td>6</td>
<td>96</td>
<td>1178.28</td>
<td>1</td>
<td>3.02e+003</td>
</tr>
<tr>
<td>7</td>
<td>102</td>
<td>1069.89</td>
<td>1</td>
<td>1.24e+003</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>1055.38</td>
<td>1</td>
<td>143</td>
</tr>
<tr>
<td>9</td>
<td>114</td>
<td>1050.72</td>
<td>1</td>
<td>97.2</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>1048.97</td>
<td>1</td>
<td>49</td>
</tr>
</tbody>
</table>
### MATLAB Chapter 4

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Func-count</th>
<th>f(x)</th>
<th>Step-size</th>
<th>optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>126</td>
<td>1041.28</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>132</td>
<td>1024.36</td>
<td>1</td>
<td>420</td>
</tr>
<tr>
<td>13</td>
<td>138</td>
<td>978.007</td>
<td>1</td>
<td>842</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>31</td>
<td>246</td>
<td>9.60156</td>
<td>1</td>
<td>1.74</td>
</tr>
<tr>
<td>32</td>
<td>252</td>
<td>9.60141</td>
<td>1</td>
<td>0.0904</td>
</tr>
<tr>
<td>33</td>
<td>258</td>
<td>9.60141</td>
<td>1</td>
<td>0.0188</td>
</tr>
<tr>
<td>34</td>
<td>264</td>
<td>9.60141</td>
<td>1</td>
<td>0.000627</td>
</tr>
<tr>
<td>35</td>
<td>270</td>
<td>9.60141</td>
<td>1</td>
<td>2.38e-006</td>
</tr>
</tbody>
</table>

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

- **xn =**
  - 7.6010
  - 8.5919
  - 28.5555
  - 23.7320
  - 0.8986

- **fval =**
  - 9.6014

- **exitflag =**
  - 1

- **output =**
  - iterations: 35
  - funcCount: 270
  - stepsize: 1
  - firstorderopt: 2.3842e-006
  - algorithm: 'medium-scale: Quasi-Newton line search'

- **grad =**
  - 1.0e-005 *
    - -0.0235
    - -0.1804
    - -0.0083
    - -0.0045
    - -0.2384

- **ans =**
  - solution

- **LAB =**
  - 7.6010 0
  - 7.6010 0
  - 0 8.5919
  - 0 8.5919
MATLAB Chapter 4

PHI =
    1.0000  0.8986
    0.8986  1.0000

PSI =
    28.5555   0   0   0
    0   28.5555   0   0
    0    0  23.7320   0
    0    0    0  23.7320

SIG =
    86.3305  57.7751  58.6874  58.6874
    57.7751  86.3305  58.6874  58.6874
    58.6874  58.6874  97.5521  73.8201
    58.6874  58.6874  73.8201  97.5521

ans =
    0.0674  0.0000  -1.8223   0.2112
    0.0000  -0.0673   0.6303   0.9809
   -1.8223   0.6303  -0.2671  0.0000
    0.2112   0.9809   0.0000   0.2671

f =
    9.6014
Example 6: Maximum likelihood estimates

The function to be minimized which yields maximum likelihood estimates is

\[ f = \text{tr}(\Sigma^{-1}S) + \log(|\Sigma^{-1}S|) - p, \]

where \( p \) is the number of variables; here \( p = 4 \). A problem with this function may be that during the iterative process the determinant may become negative, i.e. when some of the eigenvalues become negative. Therefore a good start vector is needed. In this example we first compute the least squares estimates of the parameters, and then use this output as starting vector for the maximum likelihood method.

P.S. Under the assumption of normality of the variables it holds that the final function value*(n-1) is chi-square distributed with degrees of freedom equal to the total number of (co)variances in the observed covariance matrix (i.e. p(p+1)/2) minus the number of unknown parameters. So in this case df=10 – 5 = 5.

function example6
S=[86.3979 57.7751 56.8651 58.8986;
  57.7751 86.2632 59.3177 59.6683;
  56.8651 59.3177 97.2850 73.8201;
  58.8986 59.6683 73.8201 97.8192]
ind=0
x=rand(1,5)
options=optimset('Diagnostics','off','Display','off','GradObj','off','...
  'Hessian','off','LargeScale','off','DerivativeCheck','on','TolFun',1E-6);
[xn,fval,exitflag,output,grad] = fminunc('func6',x,options,S,ind)
if exitflag ~= 1
    xn,fval,exitflag,output,grad, error('convergence error')
end
ind=1
[xn,fval,exitflag,output,grad] = fminunc('func6',xn,options,S,ind)
if exitflag ~= 1
    xn,fval,exitflag,output,grad, error('convergence error')
end
'solution'
LAB=[xn(1) 0;xn(1) 0;xn(2);0 xn(2)]
PHI=[1 xn(5);xn(5) 1]
PSI=diag([xn(3) xn(3) xn(4) xn(4)])
SIG=LAB*PHI*LAB'+PSI
S-SIG
X2=648*func6(xn,S,ind); %  648=n-1
df=10-length(x);
pvalue=1-chi2cdf(X2,df);
'Chi-square, df, p-value'
[X2 df pvalue]
function f=func6(x,S,ind)
LAB=[x(1) 0;x(1) 0;0 x(2);0 x(2)];
PHI=[1 x(5);x(5) 1];
PSI=diag([x(3) x(3) x(4) x(4)]);
SIG=LAB*PHI*LAB'+PSI;
if ind == 0
   f=trace((S-SIG)^2);
else
   A=inv(SIG)*S;
   f=trace(A)-log(det(A))-4;
end

>> example6

S =
  86.3979  57.7751  56.8651  58.8986
  57.7751  86.2632  59.3177  59.6683
  56.8651  59.3177  97.2850  73.8201
  58.8986  59.6683  73.8201  97.8192

ind =
   0

x =
  0.1536  0.6756  0.6992  0.7275  0.4784

xn =
   7.6010  8.5919  28.5555  23.7320  0.8986

fval =
   9.6014

exitflag =
   1

output =
    iterations: 32
    funcCount: 246
    stepsize: 1
    firstorderopt: 9.4175e-006
    algorithm: 'medium-scale: Quasi-Newton line search'
grad =
1.0e-005 *

-0.1364
0.0583
-0.0058
0.0146
0.9418

ind =
1

xn =
  7.6010   8.5919   28.5555   23.7320    0.8986

fval =
  0.0030

exitflag =
1

output =
  iterations: 0
  funcCount: 6
  stepsize: []
  firstorderopt: 1.7881e-007
  algorithm: 'medium-scale: Quasi-Newton line search'
  message: [1x117 char]

grad =
1.0e-006 *

  0
  0
  0.0021
  0.0025
  0.1788

ans =
solution

LAB =
  7.6010   0
  7.6010   0
    0   8.5919
    0   8.5919
PHI =
1.0000  0.8986
0.8986  1.0000

PSI =
28.5555    0    0    0
  0  28.5555    0    0
  0    0  23.7320    0
  0    0    0  23.7320

SIG =
86.3305  57.7751  58.6874  58.6874
  57.7751  86.3305  58.6874  58.6874
  58.6874  58.6874  97.5521  73.8201
  58.6874  58.6874  73.8201  97.5521

ans =
0.0674   0.0000  -1.8223    0.2112
0.0000  -0.0673   0.6303    0.9809
-1.8223   0.6303  -0.2671    0.0000
 0.2112   0.9809   0.0000    0.2671

ans =
Chi-square, df, p-value

ans =
1.9335   5.0000   0.8583

Thus: the chi square value is 1.9335, the degrees of freedom is 5 and the p-level is .8583 .
Example 7: Extra, minimize function with all kinds of constraints

Minimize

\[ f = (x - m)'(x - m) \text{ with } m = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 3 \\ 1 \end{pmatrix} \text{ and } Ax \leq 0, \text{ where} \]

\[ A = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}. \]

The inequality constraints mean that \( x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5 \). Verify that. The inequality constraints mean that the vector \( x \) is in increasing order. Without these inequality constraints the optimum is \( x = m \).

For finding the solution with inequality constraints we use the MATLAB function “fmincon”. By this function all kinds of constraints can be imposed on the vector \( x \). Like lower bounds, upper bounds, equality constraints, inequality constraints, nonlinear equalities and nonlinear inequalities. We don’t discuss these possibilities here. Only the problem above with inequality constraints will be shown.
>> help fmincon
FMINCON finds a constrained minimum of a function of several variables.
FMINCON attempts to solve problems of the form:
\[ \min F(X) \quad \text{subject to:} \quad A^{}X \leq B, \quad Aeq^{}X = Beq \quad (\text{linear constraints}) \]
\[ X \quad C(X) \leq 0, \quad Ceq(X) = 0 \quad (\text{nonlinear constraints}) \]
\[ LB \leq X \leq UB \]

\[ X=FMINCON(FUN,X0,A,B) \] starts at \( X0 \) and finds a minimum \( X \) to the function \( FUN \), subject to the linear inequalities \( A^{}X \leq B \). \( FUN \) accepts input \( X \) and returns a scalar function value \( F \) evaluated at \( X \). \( X0 \) may be a scalar, vector, or matrix.

\[ X=FMINCON(FUN,X0,A,B,Aeq,Beq) \] minimizes \( FUN \) subject to the linear equalities \( Aeq^{}X = Beq \) as well as \( A^{}X \leq B \). (Set \( A=[] \) and \( B=[] \) if no inequalities exist.)

\[ X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) \] defines a set of lower and upper bounds on the design variables, \( X \), so that a solution is found in the range \( LB \leq X \leq UB \). Use empty matrices for \( LB \) and \( UB \) if no bounds exist. Set \( LB(i) = -\infty \) if \( X(i) \) is unbounded below; set \( UB(i) = \infty \) if \( X(i) \) is unbounded above.

\[ X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) \] subjects the minimization to the constraints defined in \( NONLCON \). The function \( NONLCON \) accepts \( X \) and returns the vectors \( C \) and \( Ceq \), representing the nonlinear inequalities and equalities respectively. \( FMINCON \) minimizes \( FUN \) such that \( C(X) \leq 0 \) and \( Ceq(X)=0 \).

\[ X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) \] minimizes with the default optimization parameters replaced by values in the structure \( OPTIONS \), an argument created with the \( OPTIMSET \) function. See \( OPTIMSET \) for details. Used options are \( Display \), \( TolX \), \( TolFun \), \( TolCon \), \( DerivativeCheck \), \( Diagnostics \), \( FunValCheck \), \( GradObj \), \( GradConstr \), \( Hessian \), \( MaxFunEvals \), \( MaxIter \), \( DiffMinChange \) and \( DiffMaxChange \), \( LargeScale \), \( MaxPCGIter \), \( PrecondBandWidth \), \( TolPCG \), \( TypicalX \), \( HessPattern \), and \( OutputFcn \). Use the \( GradObj \) option to specify that \( FUN \) also returns a second output argument \( G \) that is the partial derivatives of the function \( df/dX \), at the point \( X \). Use the \( Hessian \) option to specify that \( FUN \) also returns a third output argument \( H \) that is the 2nd partial derivatives of the function (the Hessian) at the point \( X \). The Hessian is only used by the large-scale method, not the line-search method. Use the \( GradConstr \) option to specify that \( NONLCON \) also returns third and fourth output arguments \( GC \) and \( GCeq \), where \( GC \) is the partial derivatives of the constraint vector of inequalities \( C \), and \( GCeq \) is the partial derivatives of the constraint vector of equalities \( Ceq \). Use \( OPTIONS = [] \) as a place holder if no options are set.

\[ [X,FVAL]=FMINCON(FUN,X0,...) \] returns the value of the objective function \( FUN \) at the solution \( X \).

\[ [X,FVAL,EXITFLAG]=FMINCON(FUN,X0,...) \] returns an \( EXITFLAG \) that describes the exit condition of \( FMINCON \). Possible values of \( EXITFLAG \) and the corresponding exit conditions are

1. First order optimality conditions satisfied to the specified tolerance.
2. Change in \( X \) less than the specified tolerance.
3. Change in the objective function value less than the specified tolerance.
4. Magnitude of search direction smaller than the specified tolerance and constraint violation less than options.TolCon.
5. Magnitude of directional derivative less than the specified tolerance and constraint violation less than options.TolCon.
0. Maximum number of function evaluations or iterations reached.
-1. Optimization terminated by the output function.
-2. No feasible point found.
[X,FVAL,EXITFLAG,OUTPUT]=FMINCON(FUN,X0,...) returns a structure
OUTPUT with the number of iterations taken in OUTPUT.iterations, the number
of function evaluations in OUTPUT.funcCount, the algorithm used in
OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations,
the first-order optimality (if used) in OUTPUT.firstorderopt, and the exit
message in OUTPUT.message.

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=FMINCON(FUN,X0,...) returns the Lagrange multipliers
at the solution X: LAMBDA.lower for LB, LAMBDA.upper for UB, LAMBDA.ineqlin is
for the linear inequalities, LAMBDA.eqlin is for the linear equalities, LAMBDA.ineqnonlin is for
the nonlinear inequalities, and LAMBDA.eqnonlin is for the nonlinear equalities.

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=FMINCON(FUN,X0,...) returns the value of
the gradient of FUN at the solution X.

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]=FMINCON(FUN,X0,...) returns the
value of the HESSIAN of FUN at the solution X.

Examples
FUN can be specified using @:
   X = fmincon(@(humps,...)
   In this case, F = humps(X) returns the scalar function value F of the HUMPS function
   evaluated at X.

   FUN can also be an anonymous function:
   X = fmincon(@(x) 3*sin(x(1))+exp(x(2)),[1;1],[],[],[],[],[0 0])
   returns X = [0;0].

If FUN or NONLCON are parameterized, you can use anonymous functions to capture
the problem-dependent parameters. Suppose you want to minimize the objective
given in the function myfun, subject to the nonlinear constraint mycon, where
these two functions are parameterized by their second argument a1 and a2, respectively.
Here myfun and mycon are M-file functions such as

   function f = myfun(x,a1)
   f = x(1)^2 + a1*x(2)^2;

   and

   function [c,ceq] = mycon(x,a2)
   c = a2/abs(x(1)) - x(2);
   ceq = [];

To optimize for specific values of a1 and a2, first assign the values to these
two parameters. Then create two one-argument anonymous functions that capture
the values of a1 and a2, and call myfun and mycon with two arguments. Finally,
pass these anonymous functions to FMINCON:

   a1 = 2; a2 = 1.5; % define parameters first
   options = optimset('LargeScale','off'); % run medium-scale algorithm
   x = fmincon(@(x)myfun(x,a1),[1;2],[ ],[],[],[],[],[],@(x)mycon(x,a2),options)

See also optimset, fminunc, fminbnd, fminsearch, @, function_handle.

Reference page in Help browser
doc fmincon
function example7
lb=[];ub=[]
'no lower or upper bound'
A=[1 -1 0 0 0;...
  0 1 -1 0 0;...
  0 0 1 -1 0;...
  0 0 0 1 -1]
b=[0;0;0;0;0]
'Ax<=b inequality constraints'
Aeq=[]; beq=[]
'no linear equality constraints'
options=optimset('Diagnostics','off','Display','off','GradObj','off',...
 'Hessian','off','LargeScale','off','DerivativeCheck','on', 'TolFun',1E-6);
x=rand(1,5)
[xn,fval,exitflag,output,grad] = ...
   fmincon(@func7,x,A,b,Aeq,beq,lb,ub,@funcon7a,options)
'funcon7a no nonlinear (in)equality constraints'
'funcon7b only nonlinear inequality constraints'
if exitflag ~= 1
   xn,fval,exitflag,output,grad,error('convergence error')
end

function f=func7(x)
m=[1 3 2 3 1];
f=sum((x-m).^2);

function [c,ceq]=funcon7a(x)
c=[];
% no nonlinear inequality constraints
ceq=[];
% no nonlinear equality constraints

function [c,ceq]=funcon7b(x)
c=[x(1)-x(2);...
  x(2)-x(3)];
% nonlinear inequality constraints
ceq=[];
% no nonlinear equality constraints

>> example7
lb =
   []
ub =
   []
an =
no lower or upper bound
A =
    1  -1     0     0     0
    0   1    -1     0     0
    0   0     1    -1     0
    0   0     0     1    -1
b =
    0
    0
    0
    0
ans =
Ax<=b inequality constraints
Aeq =
    []
beq =
    []
ans =
funcon7a no nonlinear (in)equality constraints
ans =
funcon7b only nonlinear inequality constraints
x =
   0.0579    0.3529    0.8132    0.0099    0.1389
xn =
   1.0000    2.2500    2.2500    2.2500    2.2500
fval =
   2.7500
exitflag =
    1
output =
    iterations: 3
    funcCount: 24
    stepsize: 1
    algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
    firstorderopt: 3.3939e-008
    cgiterations: []
    message: [1x144 char]
grad =
    lower: [5x1 double]
    upper: [5x1 double]
    eqlin: [0x1 double]
    eqnonlin: [0x1 double]
    ineqlin: [4x1 double]
    ineqnonlin: [0x1 double]
Exercises chapter 4

1: Minimize the function \( f(x) = 2x^2 - e^x \). Note: the derivative is \( g(x) = 4x - e^x \). Solving the zero points of this gradient is not simple. Therefore for minimizing the function \( f(x) = 2x^2 - e^x \) we use an iterative algorithm; as MATLAB does.

2: Minimize the function \( f(x) = (x_2 - x_1)^4 + 8x_1x_2 - x_1 + x_2 + 3 \). Make a plot of this function and show that there are a local minimum, a global minimum and a saddle point.

3: Minimize the function \( f(x) = x_1^2 - x_1x_2 + x_2^2 \). For a plot of this function see example 5 of chapter 3. Compare the results.

4: Minimize the function \( f(x) = .5x_1^2 - 2x_1x_2 + 2x_2^2 \). For a plot of this function see example 5 of chapter 3. Compare the results.

5: Minimize the function \( f(x) = x_1^2 - 2x_1x_2 + \frac{1}{2}(x_2^2 - 1) \). For a plot of this function see example 5 of chapter 3. Compare the results.

6: Instead of carrying out an unweighted least squares method in example 4 above, carry out a maximum likelihood estimation method. Does the model fit the data?

7: In example 6 above the model did fit the data. The corresponding model has a correlation between the factors named \( \rho \) which was estimated as \( \hat{\rho} = .8986 \). Fit a model in which \( \rho = 1 \). Does this model fit the data?