Completely elaborated example of data order instability in a Between-group Average hierarchical cluster analysis

Willem A. van der Kloot
Department of Psychology
Leiden University
The Netherlands

November 15, 2005
Given the matrix \mathbf{D} of distances between six objects, A through F, a hierarchical agglomerative cluster analysis using the Between-group average\(^1\) method (Baverage; also known as UPGMA) is performed.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>25</td>
<td>17</td>
<td>115</td>
<td>102</td>
<td>64</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>0</td>
<td>19</td>
<td>90</td>
<td>76</td>
<td>38</td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>19</td>
<td>0</td>
<td>101</td>
<td>89</td>
<td>48</td>
</tr>
<tr>
<td>D</td>
<td>115</td>
<td>90</td>
<td>101</td>
<td>0</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>E</td>
<td>102</td>
<td>76</td>
<td>89</td>
<td>22</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>F</td>
<td>64</td>
<td>38</td>
<td>48</td>
<td>51</td>
<td>49</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 1. Find the smallest distance in \mathbf{D}. This is $d_{AC} = 17$, the distance between Objects A and C.

Merge Objects A and C into Cluster $\{A, C\}$. Compute the distances between Cluster $\{A, C\}$ and the remaining objects by averaging the distances between each object outside and the two objects in the cluster: $d_{B\{A,C\}} = (d_{AB} + d_{BC})/2 = (25 + 19)/2 = 22$; $d_{D\{A,C\}} = (d_{AD} + d_{CD})/2 = (115 + 101)/2 = 108$; $d_{E\{A,C\}} = (d_{AE} + d_{CE})/2 = (102 + 89)/2 = 95.5$; $d_{F\{A,C\}} = (d_{AF} + d_{CF})/2 = (64 + 48)/2 = 56$. Update distance matrix \mathbf{D} into $\mathbf{D}^{(1)}$.

\[\mathbf{D}^{(1)}, \text{updated matrix of distances between one cluster and five remaining objects after Step 1 in the agglomeration process.} \]

<table>
<thead>
<tr>
<th></th>
<th>A, C</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A, C}$</td>
<td>0</td>
<td>22</td>
<td>108</td>
<td>95.5</td>
<td>56</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>0</td>
<td>90</td>
<td>76</td>
<td>38</td>
</tr>
<tr>
<td>D</td>
<td>108</td>
<td>90</td>
<td>0</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>E</td>
<td>95.5</td>
<td>76</td>
<td>22</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>F</td>
<td>56</td>
<td>38</td>
<td>51</td>
<td>49</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 2. Find the smallest distance in $\mathbf{D}^{(1)}$. There are two such values: $d_{B\{A,C\}} = 22$ and $d_{DE} = 22$.

Therefore, there are two options to form a new cluster:

Option 1: Merge D and E.

Compute distances as above: $d_{D,E\{A,C\}} = (d_{AD} + d_{CD} + d_{AE} + d_{CE})/4 = (115 + 101 + 102 + 89)/4 = 101.75$, $d_{D,E,B} = (d_{BD} + d_{BE})/2 = (90 + 76)/2 = 83$, and $d_{D,E,F} = (d_{DF} + d_{EF})/2 = (51 + 49)/2 = 50$. Update $\mathbf{D}^{(1)}$ into $\mathbf{D}^{(2, \text{Option 1})}$.

Step 3.2. Find the smallest distance in $D_{(2, \text{Option 1})}$. This is $d_{B\{A,C\}} = 22$. Merge Object B with Cluster $\{A,C\}$. Compute $d_{(D,E)\{A,B,C\}} = (d_{AD} + d_{BD} + d_{CD} + d_{AE} + d_{BE} + d_{CE})/6 = (115 + 90 + 101 + 102 + 76 + 89)/6 = 573/6 = 95.5$ and $d_{(A,B,C)F} = (d_{AF} + d_{BF} + d_{CF})/3 = (64 + 38 + 48)/3 = 50$.

Update $D_{(2, \text{Option 1})}$ into $D_{(3, \text{Option 1})}$.

Step 4.2. Find the smallest distance in $D_{(3, \text{Option 1})}$. There are two smallest distances: $d_{F\{A,B,C\}} = d_{F\{D,E\}} = 50$ and therefore again two options:

Option 1.A: Merge Object F with Cluster $\{A,B,C\}$.

Now we have two clusters left: $\{A,B,C,F\}$ and $\{D,E\}$. The distance between those two clusters is

$$= (3 \times 2 \times 95.5 + 1 \times 2 \times 50)/(3 \times 2 + 1 \times 2) = 673/8 = 84.125$$

(this is an equivalent and simpler formula that only needs the latest updated matrix D and the number of elements in each of the latest clusters).

The next and last fusion necessarily merges all objects into one cluster, with fusion coefficient 84.125.

Option 1.B: Merge Object F with Cluster $\{D,E\}$.

Again, we have two clusters left: $\{A,B,C\}$ and $\{D,E,F\}$.

$$= (3 \times 2 \times 95.5 + 3 \times 1 \times 50)/(3 \times 2 + 3 \times 1) = 723/9 = 80.333$$

The next and last fusion necessarily merges all objects into one cluster, with fusion coefficient 80.333.
Option 2: Merge B with A and C.

Compute the distances between $\{A,B,C\}$ and the remaining objects and clusters:

\[
d_{D(A,B,C)} = (d_{AD} + d_{BD} + d_{CD})/3 = (115 + 90 + 101)/3 = 102; \quad d_{E(A,B,C)} = (d_{AE} + d_{BE} + d_{CE})/3 = (102 + 76 + 89)/3 = 89; \quad d_{F(A,B,C)} = (d_{AF} + d_{BF} + d_{CF})/3 = (64 + 38 + 48)/3 = 50.
\]

Update $D_{(1)}$ into $D_{(2,\text{Option 2})}$.

\[
D_{(2,\text{Option 2})}, \text{ updated matrix of distances between one cluster and three objects after Step 2 in the agglomeration process after choosing Option 1 of breaking two ties}
\]

<table>
<thead>
<tr>
<th></th>
<th>${A,B,C}$</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A,B,C}$</td>
<td>0</td>
<td>102</td>
<td>89</td>
<td>50</td>
</tr>
<tr>
<td>D</td>
<td>102</td>
<td>0</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>E</td>
<td>89</td>
<td>22</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>51</td>
<td>49</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3.1. Find the smallest distance in $D_{(2,\text{Option 2})}$. This is $d_{DE} = 22$. Merge Objects D and E.

Compute the distances between $\{D,E\}$ and the remaining objects and clusters:

\[
d_{D\{D,E\}}(A,B,C) = (d_{AD} + d_{BD} + d_{CD} + d_{AE} + d_{BE} + d_{CE})/6 = (115 + 90 + 101 + 102 + 76 + 89)/6 = 573/6 = 95.5 \quad \text{and} \quad d_{F\{D,E\}}(A,B,C) = (d_{DF} + d_{EF})/2 = (51 + 49)/2 = 50.
\]

Update $D_{(2,\text{Option 2})}$ into $D_{(3,\text{Option 2})}$.

\[
D_{(3,\text{Option 2})}, \text{ updated matrix of distances between two clusters and one object after Step 2 in the agglomeration process after choosing Option 1 of breaking two ties}
\]

<table>
<thead>
<tr>
<th></th>
<th>${A,B,C}$</th>
<th>${D,E}$</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A,B,C}$</td>
<td>0</td>
<td>95.5</td>
<td>50</td>
</tr>
<tr>
<td>${D,E}$</td>
<td>95.5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 4.1. Find the smallest distance in $D_{(3,\text{Option 2})}$. There are two smallest distances: $d_{F\{A,B,C\}} = d_{F\{D,E\}} = 50$. Therefore, there are again two options:

Option 2.A: Merge Object F with Cluster A,B,C.

We have the same clusters left as in Option 1.A: $\{A,B,C,F\}$ and $\{D,E\}$.

\[
d_{\{A,B,C,F\}\{D,E\}} \text{ = 84.125}. \text{The next and last fusion necessarily merges all objects into one cluster, with fusion coefficient 84.125.}
\]

Option 2.B: Merge Object F with Cluster D,E.

We have the same clusters left as in Option 1.B: $\{A,B,C\}$ and $\{D,E,F\}$.

\[
d_{\{A,B,C\}\{D,E,F\}} \text{ = 80.333}. \text{The next and last fusion merges all objects into one cluster, with fusion coefficient 80.333.}
\]
The analysis of \(D \) thus may yield four different solutions. Which option is chosen, depends on the order in which the rows and columns of \(D \) are read into the computer program. Figure 1 shows the four trees that were obtained by SPSS after permuting the rows and columns of \(D \). The corresponding agglomeration schedules are listed in Table 1. The SPSS data matrix and the SPSS syntax are listed in Appendix A.

\[
\begin{array}{c}
\text{Solution 1} \\
\text{input order: ABCDEF} \\
\begin{array}{c}
A \\
C \\
B \\
F \\
D \\
E
\end{array}
\end{array} \\
\begin{array}{c}
\text{Solution 2} \\
\text{input order: FDEACB} \\
\begin{array}{c}
A \\
C \\
B \\
F \\
D \\
E
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{Solution 3} \\
\text{input order: FABCDE} \\
\begin{array}{c}
A \\
C \\
B \\
F \\
D \\
E
\end{array}
\end{array} \\
\begin{array}{c}
\text{Solution 4} \\
\text{input order: FACDEB} \\
\begin{array}{c}
A \\
C \\
B \\
F \\
D \\
E
\end{array}
\end{array}
\]

Figure 1. Four dendrograms of the Objects A through F obtained by SPSS' Baverage analysis of the distance matrix \(D \) in four different input orders. The connections between the horizontal lines indicate the stages at which the clusters were formed; usually, they indicate the values of the fusion coefficients.
Table 1.
Agglomeration Schedules Corresponding to the Dendrograms of Figure 1.

1. Input Order **ABCDEF**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cluster Combined: Cluster 1</th>
<th>Cluster Combined: Cluster 2</th>
<th>Coefficients</th>
<th>Stage Cluster First Appears: Cluster 1</th>
<th>Stage Cluster First Appears: Cluster 2</th>
<th>Next Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (A)</td>
<td>3 (C)</td>
<td>17.000</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4 (D)</td>
<td>5 (E)</td>
<td>22.000</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1 (A, C)</td>
<td>2 (B)</td>
<td>22.000</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1 (A, B, C)</td>
<td>6 (F)</td>
<td>50.000</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 (A, B, C, F)</td>
<td>4 (D, E)</td>
<td>84.125</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Input Order **FDEACB**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cluster Combined: Cluster 1</th>
<th>Cluster Combined: Cluster 2</th>
<th>Coefficients</th>
<th>Stage Cluster First Appears: Cluster 1</th>
<th>Stage Cluster First Appears: Cluster 2</th>
<th>Next Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (A)</td>
<td>3 (C)</td>
<td>17.000</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1 (A, C)</td>
<td>2 (B)</td>
<td>22.000</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4 (D)</td>
<td>5 (E)</td>
<td>22.000</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1 (A, B, C)</td>
<td>6 (F)</td>
<td>50.000</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 (A, B, C, F)</td>
<td>4 (D, E)</td>
<td>84.125</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Input Order **FABCDE**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cluster Combined: Cluster 1</th>
<th>Cluster Combined: Cluster 2</th>
<th>Coefficients</th>
<th>Stage Cluster First Appears: Cluster 1</th>
<th>Stage Cluster First Appears: Cluster 2</th>
<th>Next Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (A)</td>
<td>3 (C)</td>
<td>17.000</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4 (D)</td>
<td>5 (E)</td>
<td>22.000</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1 (A, C)</td>
<td>2 (B)</td>
<td>22.000</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4 (D, E)</td>
<td>6 (F)</td>
<td>50.000</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 (A, B, C)</td>
<td>4 (D, E, F)</td>
<td>80.330</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Input order **FACDEB**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Cluster Combined: Cluster 1</th>
<th>Cluster Combined: Cluster 2</th>
<th>Coefficients</th>
<th>Stage Cluster First Appears: Cluster 1</th>
<th>Stage Cluster First Appears: Cluster 2</th>
<th>Next Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (A)</td>
<td>3 (C)</td>
<td>17.000</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1 (A, C)</td>
<td>2 (B)</td>
<td>22.000</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4 (D)</td>
<td>5 (E)</td>
<td>22.000</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4 (D, E)</td>
<td>6 (F)</td>
<td>50.000</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 (A, B, C)</td>
<td>4 (D, E, F)</td>
<td>80.330</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix A

SPSS data matrix

```
<table>
<thead>
<tr>
<th>rowtype</th>
<th>label</th>
<th>varname</th>
<th>var1</th>
<th>var2</th>
<th>var3</th>
<th>var4</th>
<th>var5</th>
<th>var6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROX</td>
<td>A</td>
<td>var1</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>17.000</td>
<td>115.000</td>
<td>102.000</td>
</tr>
<tr>
<td>PROX</td>
<td>B</td>
<td>var2</td>
<td>25.000</td>
<td>.0000</td>
<td>.0000</td>
<td>19.000</td>
<td>90.000</td>
<td>76.000</td>
</tr>
<tr>
<td>PROX</td>
<td>C</td>
<td>var3</td>
<td>17.000</td>
<td>19.000</td>
<td>.0000</td>
<td>.0000</td>
<td>101.000</td>
<td>69.000</td>
</tr>
<tr>
<td>PROX</td>
<td>D</td>
<td>var4</td>
<td>115.000</td>
<td>90.000</td>
<td>101.000</td>
<td>.0000</td>
<td>.0000</td>
<td>22.000</td>
</tr>
<tr>
<td>PROX</td>
<td>E</td>
<td>var5</td>
<td>102.000</td>
<td>76.000</td>
<td>89.000</td>
<td>22.000</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>PROX</td>
<td>F</td>
<td>var6</td>
<td>64.0000</td>
<td>38.000</td>
<td>48.000</td>
<td>51.000</td>
<td>46.000</td>
<td>.0000</td>
</tr>
</tbody>
</table>
```

SPSS syntax

```
* input order ABCDEF.
CLUSTER  var1 var2 var3 var4 var5 var6
   /METHOD BAVERAGE
   /ID=label
   /PRINT SCHEDULE
   /PLOT DENDROGRAM
   /matrix=in(*) .

* input order FDEACB.
CLUSTER  var6 var4 var5 var1 var3 var2
   /METHOD BAVERAGE
   /ID=label
   /PRINT SCHEDULE
   /PLOT DENDROGRAM
   /matrix=in(*) .

* input order FABCDE .
CLUSTER  var6 var1 var2 var3 var4 var5
   /METHOD BAVERAGE
   /ID=label
   /PRINT SCHEDULE
   /PLOT DENDROGRAM
   /matrix=in(*) .

* input order FACDEB .
CLUSTER  var6 var1 var3 var4 var5 var2
   /METHOD BAVERAGE
   /ID=label
   /PRINT SCHEDULE
   /PLOT DENDROGRAM
   /matrix=in(*) .
```