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Introduction 

 
In the bachelors / masters program for Psychology in Leiden we have an extensive 
program for Multivariate Analysis in general. This program consists of courses in: 
Multivariate Analysis, Test Theory, Multidimensional Scaling, Cluster Analysis, 
Computational Statistics, Structural Equations Models. 
 
The practice in teaching these courses is that students learn how to use some statistical 
packages for carrying out the analyses.  These packages are very welcome. However, a 
disadvantage is that students are not familiar with the basic principles of these techniques. 
This is in particular important for students who are willing to learn more than “pushing 
buttons”. We think of students who want to know the basic principles behind these 
methods and want to extend their knowledge to other new techniques.  For these students 
Matrix Algebra is absolutely important. Therefore in this monograph we give an 
introduction to Matrix Algebra.  
 
This is not a course for mathematicians and we will not give rigid proofs. Mostly we only 
give simple examples. However, we think that the material we present is sufficient for 
students who want to know the basic ideas.  
 
In each chapter the main theory is given. Because in the courses following to this course, 
we will give in this course sometimes the MATLAB code of the problems. Also, in cases 
where it is easy to compare the solutions with SPSS, the SPSS output is given too. 
However, the main purpose of this monograph is to understand some basic principles of 
matrix algebra and not the use of computer programs. 
 
The structure of the chapters is as follows: each chapter consists of the theory and ends 
with some exercises. The solutions of the exercises are given in the last part of the 
monograph. 
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Used Notation 

 
Matrices: capitals, bold. Examples: A, B, X,… 
Vectors: lower case, bold. Examples: a, b, x,… 
Scalars: lower case. Examples: a, b, x,… 
Random variables: Examples: A, B, X,… 
 
If matrix operations are written, then it is assumed that these operations exist. For 
instance, the product of two matrices A and B, AB, means that the number of columns of 
A is equal to the number of rows of B. 
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Chapter 1 
 
Some basics 

 
 
 
 
 
 
Data can be presented in a special kind of table, a so-called matrix. Matrices are useful 
with linear algebra. 
 
 

1.1 What a matrix is 
 
A matrix will be denoted by capital Latin letters, like A or B, and is notated as 
 

 

11 12 1

21 22 2

1 2

. .

. .

. . . . .

. . . .

. . . . .

. .

p

p

ij

n n np

a a a

a a a

a

a a a

 
 
 
 

=  
 
 
  
 

A , 

 
where ija  is element in row i and column j. Mind the order of the indices. The order of 

the matrix is denoted as (   )n p× . Here, we will consider two kinds of matrices, namely 
square matrices, for example, (2  2)× ,  (3  3)×  or  (   )i i×  in general, and rectangular 
matrices, for example,  (2  4)×  or  (3  5)× . Examples of square matrices are 
 

1 2 3

5 4 1

3 6 2

 
 =  
 
 

A  asymmetric matrix,           

1 2 3

2 4 5

3 5 2

 
 =  
 
 

A  symmetric matrix, ij jia a= , 

1 0 0

0 4 0

0 0 6

 
 =  
 
 

A  diagonal matrix, 0ija =  for i j≠ , 

   

1 0 0

0 1 0

0 0 1

 
 =  
 
 

A  identity matrix,                

0 0 0

0 0 0

0 0 0

 
 =  
 
 

A  null matrix. 
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The transpose of a matrix A  is denoted by 'A . An example: 
 

1 3

2 4

5 6

 
 =  
 
 

A  and 
1 2 5

'
3 4 6

 
=  
 

A . 

 
Sometimes the transpose of a matrix is denoted as TA . If the order of a matrix 
is  (   )n p× , then the transpose has order  (  )p n× . 
 
Besides matrices there are vectors and scalars. Example vector: 
 

1

2

.

n

x

x

x

 
 
 =
 
  
 

x  column vector, and ( )1 2' . nx x x=x  row vector. 

 
Example scalar: 

( )x x=  scalar, number. 

 
 
 

1.2 Simple operations 
 
Let the following matrices and vectors be defined 
 

1 2 3

3 2 1

 
=  
 

A , 

4 3

3 4

5 6

 
 =  
 
 

B , 

1

2

3

 
 =  
 
 

a  and 

4

5

6

 
 =  
 
 

b . 

 
Addition of two matrices is defined if both matrices have the same number of rows and 
the same number of columns, hence the order of the matrices is equal: 
 

1 4 2 3 3 5 5 5 8
'

3 3 2 4 1 6 6 6 7

+ + +   
+ =   + + +   

A B = , 

 
+A B =  not possible, the order of the matrices are not equal to each other.  

 
For subtraction the order of the matrices must also be equal: 
 

1 4 2 3 3 5 3 1 2
'

3 3 2 4 1 6 0 2 5

− − − − − −   
− =   − − − − −   

A B = . 
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The product of a scalar and a matrix is defined as: 
 

11 12 13 11 12 13

21 22 23 21 22 23

a a a ca ca ca
c c

a a a ca ca ca

   
=   

   
A = . 

 
An example; if 3c =  and A is as above, then 
 

1 2 3 3 6 9
3

3 2 1 9 6 3
c

   
=   

   
A = . 

 
The product of a row vector and a column vector, with an equal number of elements, is 
defined as: 

( )
1

2

1 2 1 1 2 2' . ...
.p p p

p

b

b
a a a a b a b a b

b

 
 
 = = + + +
 
  
 

a b  

 
An example; if a and b are defined as above, then 
 

( )
4

' 1 2 3 5 1 4 2 5 3 6 4 10 18 32

6

 
 = = × + × + × = + + = 
 
 

a b  

 
The pre multiplication of a vector b by a matrix A is defined if the number of columns of 
A is equal to the number of rows of b: 
 

1
11 12 13 11 1 12 2 13 3

2
21 22 23 21 1 22 2 23 3

3

b
a a a a b a b a b

b
a a a a b a b a b

b

 
+ +     =     + +    

 

Ab =  

 
There is a similar definition for bA, the post multiplication of b by A (if the number of 
elements in b equals the number of rows in A). An example; if A and b are defined as 
above, then 
 

4
1 2 3 (1 4) (2 5) (3 6) 32

5
3 2 1 (3 4) (2 5) (1 6) 28

6

 
× + × + ×       = =       × + × + ×      

 

Ab =  
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The pre multiplication of a matrix B by a matrix A is defined as AB if the number of 
columns of A are equal to the number of rows of B: 
 

11 12
11 12 13 11 11 12 21 13 31 11 12 12 22 13 32

21 22
21 22 23 21 11 22 21 23 31 21 12 22 22 23 32

31 32

b b
a a a a b a b a b a b a b a b

b b
a a a a b a b a b a b a b a b

b b

 
+ + + +    = =     + + + +    

 

AB . 

 
There is a similar definition for BA, the post multiplication of B by A. 
An example; if A and B are defined as above, then 
 

4 3
1 2 3 (1 4) (2 3) (3 5) (1 3) (2 4) (3 6) 25 29

3 4
3 2 1 (3 4) (2 3) (1 5) (3 3) (2 4) (1 6) 23 23

5 6

 
× + × + × × + × + ×      = = =       × + × + × × + × + ×      

 

AB . 

Let 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

C = , an identity matrix. Pre (or post) multiplying a matrix with an 

identity matrix results in the same matrix: 
  

1 0 0
1 2 3 1 0 0 0 2 0 0 0 3 1 2 3

0 1 0
3 2 1 3 0 0 0 2 0 0 0 1 3 2 1

0 0 1

 
+ + + + + +       = =       + + + + + +      

 

AC = . 

 

Let 

1 0 0

0 2 0

0 0 3

 
 
 
 
 

D = , a diagonal matrix. Post multiplying a matrix with a diagonal matrix 

results in a matrix in which the columns of the original matrix are multiplied with the 
diagonal elements of the diagonal matrix: 
 

1 0 0
1 2 3 1 0 0 0 4 0 0 0 9 1 4 9

0 2 0
3 2 1 3 0 0 0 4 0 0 0 3 3 4 3

0 0 3

 
+ + + + + +       = =       + + + + + +      

 

AD = . 

 
Pre multiplying a matrix with a diagonal matrix results in a matrix in which the rows of 
the original matrix are multiplied with the diagonal elements of the diagonal matrix: 
 

1 0 0 4 3 4 0 0 3 0 0 4 3

0 2 0 3 4 0 6 0 0 8 0 6 8

0 0 3 5 6 0 0 15 0 0 18 15 18

+ + + +      
      = + + + + =      
      + + + +      

DB = . 
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In general, the following properties hold: 
 

+ = +A B B A  
 

1(= −A - B B - A)  
 

≠AB BA . 
 

 

 

 

1.3 Examples and MATLAB code 
 
To define a matrix in MATLAB one must specify all the elements per row between 
square brackets. The different rows need to be separated by a ‘;’. Of course, all rows must 
be of equal length. The MATLAB code to define a matrix B, is: 
 

% Define matrix B  
B = [1 2 3;5 4 1;3 6 2]  

 
 
 

B =                
     1     2     3 
     5     4     1 
     3     6     2 

 
In a similar way vectors can be defined by: 
 

% Define vectors x and y 
x = [1; 2; 3; 4; 5] 
y = [1 2 3 4 5]   

 
 
 
 
 
 

x = 
     1 
     2 
     3 
     4 
     5 
 
y = 
     1     2     3     4     5 

 
The transpose of the matrix B can be obtained with: 
 

% Transpose of B 
B'  

 
 

ans = 
     1     5     3 
     2     4     6 
     3     1     2

 
Note: when the result of a statement is not assigned  
to a specific source, MATLAB simply refers to the  
obtained result as ‘ans’. 
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If we define 

1 2 3

3 2 1

 
=  
 

A ,   
4 3 5

3 4 6

 
=  
 

B , 

-1

0

2

 
 
 
 
 

y =   and  3c =  

 
then, the addition of the matrices A and B is given by: 
 

% Add A and B 
C = A+B 

 
 

C = 
     5     5     8 
     6     6     7 

 
Subtraction of both matrices can be done by: 
 

% Subtract A and B 
D = A-B 

 
 

D = 
     -3    -1    -2 
      0    -2    -5

 
Multiplication of the two matrices:  
 

% Multiply A and B 
E = A*B' 

 F = B'*A  
 
 

E =  F = 
    25    29      13   14   15 
    23    23                  15   14   13 

         23   22   21

 
Multiplication of matrix A and vector y / scalar c: 
 

% Multiply A and y or c 
A*y 
c*A 

  

ans =                     ans =  
         5                        3   6   9 
        -1                        9   6   3 

 
Let n denote the number of rows and p the number  
of columns, then the order of matrix A can be  
determined by using the ‘size(A) ’ function: 
 

% Order of A 
[n,p] = size(A) 
 

 
 

n = 
     2 
 
p = 
     3 
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1.4 Exercises 
 
Let the following matrices and vectors be defined:  
 

3 4 0

6 4 2

 
=  
 

A  

2 6

1 0

4 2

 
 =  
 
 

B   
3 2 1

3 4 1

 
=  
 

C   
3 6

6 1

 
=  
 

D  

 
1 3

1 0

6 2

1 1

 
 − =
 −
  − 

X  ( )' 2 3=u    
3

4

 
=  
 

v  

 
1. Compute by hand: 
 

a. A+C and A-C 
b. A + B and A+B’  
c. AB  
d. AC and AC’  
e. 'u Du  
f. 'u v  
g.( ) '+A C  
h. 3C  
i. BA  
j. 'X X  
k. u’X and Xu’ ; vX and Xv 

 
2. Compute the above exercises with MATLAB and compare the results. 
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Chapter 2  
 
The determinant of a matrix 

 
 
 
 
 
 
The determinant is a function defined on square matrices. It is uniquely defined.  
 
 
 

2.1 What a determinant is 
 
Let A be a square matrix, then the determinant of A is denoted as A or det(A). For a (2 × 

2) matrix A, the determinant is defined as 
 

          11 12
11 22 12 21

21 22

.
a a

a a a a
a a

= −  

 

Example: let 
4 1

,  then (4 2) (1 1) 7.
1 2

 
= = × − × = 
 

A A  

 
Definition: the minor of element ija  is the determinant of the matrix formed by removing 

row i and column j of the matrix A. 
 

Example: let A be  
 

            
11 12 13

21 22 23

31 32 33

,

a a a

a a a

a a a

 
 =  
 
 

A  

 

then the minor of 22 23
11

32 33

 is 
a a

a
a a

 and the minor of 21 23
12

31 33

 is .
a a

a
a a

  

This are the determinants of two 2×2 matrices. 
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            Example: Let A be 
 

            

1 2 3

2 2 1

3 1 4

 
 =  
 
 

A  

 

The minor of 22

1 3
 is (1 4) (3 3) 5.

3 4
a = × − × = −  

 
 
Definition: The cofactor ijc  of element ija  is ( 1)  minor( ).i j

ij ijc a+= − ×  

 
Example (see example above): 2 2

22 ( 1) 5 1 5 5.c += − × − = × − = −   
 
Definition: the determinant of A is: 

1|| 131312121111 rowoftermsincacacaA ++=  
irowoftermsincacaca iiiiii 332211 ++=  

jcolumnoftermsincacjaca jjjjj 33211 ++=  

 
 

Example (see example above): 
 

Element  minor  cofactor  Element × cofactor 
 

11 1a =   
2 1

7
1 4

=    7    7 

 

12 2a =   
2 1

5
3 4

=   –5     –10  

 
 

13 3a =   
2 2

4
3 1

= −   – 4   –12  

        ___ 
   

=A         –15  

 
Exercize: Compute |A| by means of the elements of column 2. 
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2.2 Example and MATLAB code 
 
To obtain the determinant of a square matrix: 
 

% Determinant of A  
A = [1 2 3;2 2 1; 3 1 4]; 
det(A) 

               ans =                      
                   -15            

 
 

 
 

2.3 Exercise 
 
Let matrix A, B and C be defined as 

 
2 1 3 2 1 3 2 1 3

3 2 4 ,  0 0 0  and  4 2 6 .

1 1 2 1 1 2 1 1 2

     
     = = =     
     
     

A B C  

 
1: Compute the determinant of A, B, and C, i.e. ,A |B|, and |C|. Use different rows or 

columns and compare the results. 
 
2. Compute the determinant of the following 4×4 matrix 

,

1211

1232

1201

4321



















=

              

             

              

              

A     

 
3: Check the results with MATLAB.  

 
 
 
 
 

2.4 Properties of determinants 
 
1: The determinant of a matrix is equal to the determinant of the transpose of the matrix. 
 

Example: 
1 2 1 3

,  then ' .
3 4 2 4

   
= =   
   

A A  It is easy to verify that ' .=A A  

 
2: If one row or column of A is the null vector, then 0.=A  
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Let row/column i be consist of zero elements, then the determinant can be 
computed as the sum of products (see definition), where the products are the 
elements of row/column i times its corresponding cofactor. So all the products are 
zero and so the determinant is zero too. 

 
 
 
3: =AB A B

 

Example: 
1 2 2 3

   
3 4 4 5

−   
= =   
   

A B  

 
4 6 2= − = −A  

10 ( 12) 22= − − =B  

10 7

22 11

 
=  
 

AB  

 
110 154 44.= − = −AB  This is indeed .A B  

 
 
 
4: The determinant of an under- or upper triangular matrix is equal to the product of the 
diagonal elements. 
 

Example: 

1 2 3

0 4 5 .

0 0 6

 
 =  
 
 

A  

 

Take row 3 and find 

2 3 1 3 1 2
0 0 6

4 5 0 5 0 4

         0                0      6(1 4 0 2)

        6 4 1,

= × − × + ×

= + × − ×
= × ×

A

 

 
which is the product of the diagonal elements. 
 

Notice that the diagonal matrix 

1 0 0

0 4 0

0 0 6

 
 =  
 
 

A  has the same determinant. 
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5: If B is formed by interchanging two rows or columns of matrix A, then .= −B A  

 

Example: Let 
1 2

 then 2.
3 4

 
= = − 
 

A A  Interchanging row 1 and 2 of A gives 

3 4
and 2,

1 2

 
= = 
 

B B which is indeed .− A  

 
A more elegant proof is: 

0 1 0 1
,  and so according to property 1 it holds .

1 0 1 0

 
= = = − 
 

B A B A A  

 
 
 
6: If B is formed by multiplying one row or column of A by a constant k, then .k=B A  

 
1 2

Example:  then 2.
3 4

 
= = − 
 

A A Multiplying row one with 3, thenk =   

 

,61812
43

63
−=−==B which is indeed ||3 A×  

 
Another way is 
 

3 0 3 0
,  and so according to property 1 it holds 3 .

0 1 0 1

 
= = = × 
 

B A B A A  

 
 
 
7: If B is formed by multiplying one row (or column) of A with a constant k and adding 
this to another row (or column) of A, then .=A B  

 
Example:  
 

1 2
, then 2. Multiplying row two with 2, and adding this 

3 4

7 10
to row 1, then 28 30 2.

3 4

k
 

= = − = 
 

= = − = −

A A

B

 

Another way is 
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1 2 1 2
,  and so according to property 1 it holds .

0 1 0 1

 
= = = 
 

B A B A A  

 
 
 
8: If two rows or columns of A are equal to each other, then the determinant of A is 0. 
 

If row/column i is equal to row/column j of matrix A, then by applying property 7 
row/column i of matrix A can be made a zero vector without changing the 
determinant of A. So by property 2 the determinant of A is zero.  
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Chapter 3 
 
The inverse of a matrix 

 
 
The inverse of a square matrix A is notated as A-1 and is defined as 
 

A-1A=AA -1=I. 
 
The inverse of a matrix may be used for solving a set of linear equations. 
 
 
 

3.1 Linear equations 
 
Suppose we have two linear equations with two unknowns. As an example we have 
 
 1 22 3 5x x+ =  (3.1) 

 1 23 6 3x x− = −  (3.2) 
 
This set of equation can be written as ,=Ax b where 
 

 1

2

2 3 5
,  and .

3 6 3

x

x

    
= = =     − −     

A b x  

 
For a solution of this set of equations we follow the following steps: 
 
Step 1: multiply (3.1) with 2; this gives 
 
 1 24 6 10x x+ =  (3.3) 

 1 23 6 3x x− = −  (3.4) 
 
Step 2: add (3.3) to (3.4); this gives 
 
 1 27 0 7x x+ =  (3.5) 

 1 23 6 3x x− = −  (3.6) 
 
Step 3: divide (3.5) by 7; this gives 
 
 1 20 1x x+ =  (3.7) 

 1 23 6 3x x− = −  (3.8) 
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Step 4: divide (3.8) by 3; this gives 
  
 1 1x =  (3.9) 

 1 22 1x x− = −  (3.10) 
 
Step 5: subtract (3.9)-(3.10); this gives 
 

  1 1x =  (3.11) 

 22 2x =  (3.12) 
Step 6: divide (3.12) by 2; this gives 
 1 1x =  (3.13) 

 2 1x =  (3.14) 

 So the solution is 
1

.
1

 
=  
 

x  

 
We do now all these steps by matrices. We first define a super matrix 
 

 ( ) 2 3 5
  .

3 6 3

 
=  − − 

A b  

 
We will show that all the steps above can be done by pre-multiplying this matrix by an 
elementary matrix (i.e. a matrix with elementary row operations: addition and 
multiplication of rows) (Namboodiri,1984, p.53). 
 
Step 1: 

 
2 0 2 3 5 4 6 10

0 1 3 6 3 3 6 3

    
=    − − − −    

 

 
Step 2: 

 
1 1 4 6 10 7 0 7

0 1 3 6 3 3 6 6

    
=    − − − −    

 

 
Step 3: 
 

 
1/ 7 0 7 0 7 1 0 1

0 1 3 6 3 3 6 3

    
=    − − − −    

 

Step 4: 
 

 
1 0 1 0 1 1 0 1

0 1/ 3 3 6 3 1 2 1

    
=    − − − −    
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Step 5: 
 

 
1 0 1 0 1 1 0 1

1 1 1 2 1 0 2 2

    
=    − − −    

 

 
Step 6: 
 

 
1 0 1 0 1 1 0 1

   
0 1/ 2 0 2 2 0 1 1

   
=    

   
 

 
So the third column gives the solution of x. 
 
Remember: the problem was to solve =Ax b . This was done each step by pre-
multiplying a matrix with an elementary matrix. In the end we used 6 elementary 
matrices, so we can write the procedure as: 
 

 

6 5 4 3 2 1 6 5 4 3 2 1

2 .

E E E E E E E E E E E E=

=

=

Ax b

CAx Cb

I x Cb

 

 
So ,= 2CA I the identity matrix of order (2 × 2). The matrix C  is called the inverse of A. 

This inverse of A will be noted as 1−A . So the solution of x can be written as 
  
 1 ,−=x A b  
 
where it holds:  
 
 1

6 5 4 3 2 1.E E E E E E− =A  

 
For the example it holds: 
 

 1 1 0 1 0 1 0 1/ 7 0 1 1 2 0 2 / 7 1/ 7
.

0 1/ 2 1 1 0 1/ 3 0 1 0 1 0 1 1/ 7 2 / 21
−         

= =        − −        
A  

 
Indeed, if we pre multiply b with 1−A , then we get: 
 

 
2 / 7 1/ 7 5 1

,  which is indeed the solution.
1/ 7 2 / 21 3 1

    
= =    − −    

x  
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3.2 Alternative 
 
Generally, we can write 

 ( )1 c1
',− =A A

A
 

 
where cA  is the matrix with co-factors (see Chapter 2.1). Furthermore, the determinant of 
A must be unequal to 0. 
 

Example: See matrix A above: 
 

2 3
21

3 6
= = −

−
A  

 

( )c c c6 3
',  because  is symmetric.

3 2

− − 
= = − 

A A A  So the inverse of A is 

 

1 6 3 6 / 21 3/ 21 2 / 7 1/ 71
,

3 2 3/ 21 2 / 21 1/ 7 2 / 2121
− − −     

= = =     − − −−      
A  

 
which is indeed the inverse of A as shown above. 

 
 

3.3 Examples and MATLAB code 
 
To obtain the inverse of a square matrix: 
 

A = [2 3;3 -6] 
 
inv(A) 
 
 
 
 

A = 
     2     3 
     3    -6 
 
ans = 
    0.2857    0.1429 

          0.1429   -0.0952 

 
Solving =Ax b  for x can be obtained with: 
 

b = [5;-3] 
 
x = inv(A)*b 
 
 
 
 
 

b = 
     5 
    -3 
 
x = 
    1.0000 
    1.0000 



Matrix Algebra                                                                                                                                        21 

 

3.4 Exercise 
 

1a: Let D be defined as in the Exercise of Chapter 1, i.e.
3 6

.
6 1

 
=  
 

D  Compute 1−D , and 

check that 1 1
2.

− −= =D D DD I  

1b: Solve the system =Ax b , where 
2 3 1

 and .
4 9 2

   
= =   
   

A b  

1c: replace in 1b matrix A by 
2 3

.
4 6

 
=  
 

A  

 
2: Given matrix A and vector b: 
 

















=
121

120

432

          

         

         

A and
















=
1

2

1

b . 

 
Solve the vector x from the equations Ax=b by means of elementary row operations. 
Compute A-1 by the elementary matrices. Compute A-1  also in the alternative way and 
compare the results. 
 
 
3: Compare the results with the MATLAB output. 
 
 

3.5 Properties of the inverse 
 
1: The inverse of a nonsingular matrix, i.e. a matrix with determinant unequal to 0, is 
unique. 

The definition of the inverse is ( )1 1
'c− =A A

A
. For a nonsingular matrix it holds 

that the determinant is not 0, so the inverse is uniquely defined.  
 
2: The inverse of the inverse of matrix A is equal to matrix A. 
 

          Proof:  AAAAAAIAA =→=→= −−−−−−−− 11111111 )()()(  
 

3: ( ) 1 1 1.
− − −=AB B A  

Proof: If ( ) 1 1 1.
− − −=AB B A  then also ( ) ( )1 1 1 1 and .− − − −= =B A AB I AB B A I  

--- ( )1 1 1 1 1 1( ) ( )− − − − − −= = = =B A AB B A A B B I B B B I  

--- ( ) 1 1 1 1 1 1( ) ( )− − − − − −= = = =AB B A A BB A A I A AA I . 
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4: If A is nonsingular, i.e. |A|≠0, then 1−A  is also nonsingular. 

| A 1−A |=| A || 1−A |=|I|=1, thus | 1−A |=
|A|

1
≠0 

 
5: The inverse of the transpose of matrix A is equal to the transpose of the inverse of A. 

( ) 1
'  is the inverse of '.

−
A A  So it must hold ( ) ( )1 1' '  and ' ' .− −= =A A I A A I  

--- ( )1 1' '− −= =A A A A I  

--- ( )1 1' ' .− −= =A A AA I  
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Chapter 4 
 
Linear (in)dependence of vectors 

 
 

4.1 Linear (in)dependence 
 
Let a and b two vectors. A linear combination of these vectors can be written as: 
 
 1 2 ,k k+a b  
 
where 1 2 and k k  are scalars, which are not both equal to 0. 
 
Definition: A set of vectors is linearly dependent if one of the vectors can be written as a 
linear combination of (some of) the other vectors. 
 

Example: Suppose the following vectors are defined: 
 

1 2 8 11

3   6   4   13

5 10 2 17

       
       = = = =       
       
       

a b c d  

 
This set is linearly dependent because it holds 
 

2 .=b a  
 
General: A set of vectors is linearly dependent if a combination of vectors is equal to the 
null vector and not all k’s are equal to 0. So dependence if  
 
 Ak= 1 1 2 2 ... ,n nk k k+ + + =a a a 0  and not all ki =0. 

 
A set of vectors is linearly independent if a combination of vectors is equal to the null 
vector and all k’s are equal to 0. So independence if  
 
 Ak= 1 1 2 2 ... ,n nk k k+ + + =a a a 0  and all ki =0. 

 

Example 1: Are the set of vectors 
2 1

 and 
4 3

   
   
   

 linearly dependent? 

Investigate the set 

 1 2

2 1 0
.

4 3 0
k k
     

+ =     
     
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This set can be written as 

          1 2

1 2

2 1 0
,

4 3 0

k k

k k

     
+ =     

    
 

or 

 1 2

1 2

2 0

4 3 0

k k

k k

+ =
+ =

 

So it follows  
  

2 1 1 1 1 22 4 6 0 0 and 0. k k k k k k= − → − = → = =  
 
So there is no solution of the set of equations in which one of the scalars k is 
unequal to 0. Conclusion: the set of vectors is independent. 

 

Example 2: Are the set of vectors 
2 6

 and 
4 12

   
   
   

 linearly dependent? 

Investigate the set 

          1 2

2 6 0
.

4 12 0
k k
     

+ =     
     

 

This set can be written as 

          1 2

1 2

2 6 0
,

4 12 0

k k

k k

     + =     
    

 

or 

 1 2

1 2

2 6 0

4 12 0

k k

k k

+ =
+ =

 

So it follows  
  

1 2 2 2 23 12 12 0 0 0. k k k k k= − → − + = → =  
 
So each value of 2k  suffices(e.g. 2k =1 (and 1.k =-3). And the same holds for 1.k  
Conclusion: the set of vectors is dependent. 

 
Example 3: If ia  is the null vector, then the set ( )1 2... na a a is dependent. 

 
If ia  is the null vector, then for each scalar ik  (also non zero) it holds 0,i ik a =  

and so the set of vectors is dependent. 
 

Example 4: If ,i ja a=  then the set ( )1 2... na a a is dependent. 

 
If ,i jk k= − then ( ) 0,i i j jk a k a+ − =  and so there are scalars  and i jk k unequal to 

zero which holds. And so the set of vectors is dependent. 
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4.2 Geometry and interpretation  
in two dimensions 

 
Definition: The rank of a matrix A is the size of the largest sub-matrix of A, which is not 
singular. Notation: r(A). 
 

• Rank of a matrix can never be larger than the minimum of the number of rows or 
columns of a matrix. Example: if the order of a matrix is (4 × 6), then the rank 
cannot be larger than 4. 

 
Example 5: Let the following vectors be defined 
 

 
1 2

  .
2 4

   
= =   
   

a b  

This set of vectors is dependent, because 2 .=b a The matrix A, formed by the two 
vectors is 
 

 
1 2

,
2 4

 =  
 

A  

which is rank 1 because 0.=A  The two vectors are presented in the figure 

below:  

 
 
We have a different situation if we define the following vectors: 
 

1 4
  .

4 2

   
= =   
   

c d  
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The matrix B, formed by the two vectors is 
 

 
1 4

,
4 2

 
=  
 

B  

which is rank 2 because |B|=-14.  The two vectors are presented in the figure 
below:  

 

 
 
Example 6: Let the following vectors be defined 
 

 

1 2 2

1   2   2

2 2 1

     
     = = =     
     
     

a b c  

 
The matrix A, formed by the three vectors is 
 

 

1 2 2

1 2 2

2 2 1

 
 =  
 
 

A  

 
The determinant is 1(2 4) 2(1 4) 2(2 4) 2 6 4 0.= − − − + − = − + − =A   

So  
• matrix A is singular 
• r(A) is smaller than 3 

• the (2 × 2) sub matrix formed by rows 2 and 3 and columns 1 and 2 is 
1 2

2 2

 
 
 

, which 

is not singular. So r(A) = 2. 
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4.3 Consistent set of linear equations: =Ax b  
 
Let the following set of equations be given 
 

 
1 2

1 2 3

1 2 3

2         5      (1)

3 6 1      (2)

5 7 8      (3)

x x

x x x

x x x

+ =
+ + =
+ + =

  

Then it follows 

 1 2

1 2

2 5      (1)

2 7      (3) - (2)

x x

x x

+ =
+ =

  

 
Obviously there is no solution for this set of equations, i.e. the set of equations is 
inconsistent. 
 
In general: A set =Ax b  is consistent if and only if r (A ) = r (A | b). 
 
We may write the example above as 
 

 

2 1 0 5

3 6 1   and 1

5 7 1 8

   
   = =   
   
   

A b  

 
• 2(6 7) 1(3 5) 0= − − − =A  

• ( ) 2r ≤A  

• the sub matrix formed by rows 2 and 3 and columns 1 and 2 is 
3 6

5 7

 
 
 

, which is 

not singular. So ( ) 2.r =A  

• ( )
2 1 0 5

  3 6 1 1

5 7 1 8

 
 =  
 
 

A b  

• The matrix formed by columns 1,2 and 4 is 
 

 

2 1 5

3 6 1 .

5 7 8

 
 
 
 
 

 

 
• The determinant of this matrix is 2(41) 1(19) 5( 9) 82 19 45 18.− + − = − − =  

• So ( )  3.r =A b  

• So ( )( )   r r≠A A b  and the set of equations is inconsistent. 
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Example: let A be as above and let 

5

1 .

6

 
 =  
 
 

b  Investigate whether the set of equations is 

consistent or not. 
 

The set of equation can be written as 
 

 
1 2

1 2 3

1 2 3

2         5      (1)

3 6 1      (2)

5 7 6      (3)

x x

x x x

x x x

+ =
+ + =
+ + =

 

 
Then it follows 
 

 1 2

1 2

2 5      (1)

2 5      (3) - (2)

x x

x x

+ =
+ =

 

 
Obviously, there is just one equation with two unknowns. So there are many 
solutions. For instance, 
 
 1 20 5x x= → =  

 1 21 3x x= → =  
 
etc.. The set of equations is now consistent. This can be verified by checking that 

( ) 2r =A (as we saw before), and ( )  2,  also.r =A b  

 
 
 
Possibilities of  the solution of =Ax b    (where A is a square matrix) 
 

1: no solution: inconsistent set of equations. Here it holds: ( )( )   r r≠A A b  

2: one solution: consistent set of equations, ( )( )   r r=A A b and 0≠A  

3: many solutions: consistent set of equations, ( )( )   r r=A A b and |A|=0 (thus A 

is singular). 
 

 
 
 



Matrix Algebra                                                                                                                                        29 

 

4.4 Examples and MATLAB code 
 
Investigate the rank of the matrix A: 
 

A =[1 2 3;1 3 2;1 1 4] 
 
inv(A) 
 
rank(A)  

 
 
 
 
 
 
 
 

A = 
     1     2     3 
     1     3     2 
     1     1     4 

 
               Warning: Matrix is singular to 
               working precision. 
 

ans = 
   Inf   Inf   Inf                  ans = 
   Inf   Inf   Inf                           2 
   Inf   Inf   Inf 

Next, form a set of linear equations  
and determine rank: 
 

b1 = [1;2;0]  
 
C = [A b1] 
 
rank(C)  

 
 

 

b1 =                 C = 
         1                  1     2     3     1 
         2                  1     3     2     2 
         0                  1     1     4     0 
 
ans = 
         2 

Again, form a set of linear equations: 
 

b2 = [1;2;3] 
 
C = [A b2] 
 
rank(C)  

 
 
 

b2 =               C = 
         1               1     2     3     1 
         2               1     3     2     2 
         3               1     1     4     3 
 
ans = 
     3 
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4.5 Exercises 
 
1: Are the following set of vectors dependent or independent? 
 

1a: 
1 2 3

      
2 3 4

     
     
     

                          1b: 
1 2 0

      
2 3 0

     
     
     

  

 

1c:

1 3 2

2 8 1
      

1 9 2

6 10 2

     
     −     
     −
          −     

                      1d: 

3 2 1

2 3 6

      1 0 3

4 1 8

1 1 7

     
     −     
     
     − − −     
     −     

 

 

2: Is the vector 

6

10

2

 
 
 
 − 

 a linear combination of the following vectors 

 

1 2 1

3   8   9  ?

2 1 2

−     
     
     
     −     

 

 

3: Is the vector 

5

1

8

 
 
 
 
 

 a linear combination of the following vectors 

 

2 1 0

3   6   1  ?

5 7 1

     
     
     
     
     

 

 
4: Investigate the linear system =Ax b , that means are there zero, one or many solutions 
of the system? 
 

4a: with

1 2 3 1

1 3 2   and 2 .

1 1 4 0

   
   = =   
   
   

A b  

 

4b: the same as in 4a, but now with 

1

2 .

3

 
 =  
 
 

b  
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5: Are the following set of vectors dependent or independent? Determine the rank of the 
corresponding matrix with columns the given vectors. 
 

5a: 
1 2

  
2 4

   
   
   

    5b: 

1 2 0

1    2    0

2 2 0

     
     
     
     
     

 

 

5c: 

1 1 0

0    2    1

1 0 2

     
     
     
     
     

   5d: 

1 2 1

0 2 -2
      

2 0 6

0 1 -1

     
     
     
     
          
     

 

 
 

5e: 

2 0 1 0

0 1 1 0
         

1 2 1 1

0 1 1 2

       
       −       
       −
              −       

  5f: 

1 1 0 2

2    1    1    1

1 0 1 3

       
       
       
       −       

 

 
 
 
 

6: Is the vector 
1 1 2

 a linear combination of the vectors  and ?
3 2 4

     
     
     

 

 
 
 
 
7: The null-space of a matrix A is the set of all vectors x, for which it holds 0.=Ax  
 

7a: What is the null-space of 
1 2

?
3 4

 
=  
 

A  

 

7b: What is the null-space of 
1 2

?
3 6

 
=  
 

A  
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Chapter 5 
 
Eigenvalues and  
eigenvectors 

 
 
 
 
 
 

5.1 Theory 
 
A very important set of equations is 
 
 ,λ=Ax x  (5.1) 
 
where A is a square matrix. The vector x is called an eigenvector of A, and λ  is called an 
eigenvalue of A. To solve x and λ  in (5.1) we write 
 
  

 
( ) .

λ λ
λ

= → − = →
− =

Ax x Ax x 0

A I x 0
 (5.2) 

 
 
Obviously, one solution for x is the null-vector. This solution is called a trivial solution. 
To find non trivial solutions x must be in the null-space of λ−A I , and so 
 
 0,λ− =A I  (5.3) 

 
see exercise 7 of chapter 4. From (5.2) we can solve the eigenvalue(s) of matrix A.  
 

Example: Let 
3 5

,
2 4

 
=  − − 

A  

 

Then 
3 5 0 3 5

.
2 4 0 2 4

λ λ
λ

λ λ
−     

− = − =     − − − − −     
A I  Now λ  must be solved 

from the equation 
 

 
3 5

0.
2 4

λ
λ

−
=

− − −
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So 

 2

2

(3 )( 4 ) 5( 2) 0

12 3 4 10 0

2 0.

λ λ
λ λ λ

λ λ

− − − − − = →
− − + + + = →

+ − =
 

 
This equation is called the characteristic function. We see in this example that 
there are two possible solutions of λ .  

 
In general, if matrix A is of order  (   )p p× , then there are in principle p eigenvalues. 
These eigenvalues may all be different, or some may be equal to each other, or some may 
be imaginary. In the example above we find two different solutions for λ , namely λ =1 
and λ =-2. 
 
Corresponding to each eigenvalue there is an eigenvector. Such an eigenvector can be 
solved from (5.2). For the example above we find for the eigenvalue λ =1: 
 

1 1

2 2

3 5 1 0 3 1 5 0
( ) .

2 4 0 1 2 4 1 0

x x

x x
λ

  −          − = − = =           − − − − −           
A I x  

 
This gives the equations 
 

1 2

1 2

2 5 0       (1)

2 5 0     (2)

x x

x x

+ =
− − =

 

 
From (1) we find 1 25 2 .x x= −  (Notice that (2) gives the same solution. Why?) From this 

solution we see that we do not find a unique solution for 1x  and 2x and so we do not find 
an unique eigenvector x. This is obvious, because from (5.1) we see directly that each 
eigenvector can be multiplied with a constant for which the set of equations still holds. 
For instance, let c be a constant, then we can write 
  
 ( ) ( ),c cλ=A x x  (5.4) 
 
where now the new eigenvector is .cx  However, the equation in (5.4) is the same as in 
(5.1). So each eigenvector may be multiplied/divided by any constant. 
It is a standard convention to choose c such that ' 1.=x x  
For instance, if in the example above we choose 2 11 5 2.x x= → = −  So a solution for the 

eigenvector is 
5 2

.
1

− 
 
 

 Now by dividing this vector by the square root of the sum of 

squares of the elements we find 

            
5 2 5 / 29

/ 25 4 1 .
1 2 / 29

 − − 
= + =        

x  
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It is easy to verify that now it holds ' 1.=x x  
 
For the example above we find for the eigenvalue λ = -2 : 

 

1 1

2 2

3 5 2 0 3 ( 2) 5
( ) 0.

2 4 0 2 2 4 ( 2)

x x

x x
λ

 −  − −        − = − = =         − − − − − − −         
A I x  

 
This gives the equations 
 

1 2

1 2

5 5 0       (1)

2 2 0     (2)

x x

x x

+ =
− − =

 

 

From (1) we find 1 2.x x= −  So if 2 11 1,x x= → = −  and so the eigenvector is 
1

.
1

− 
=  
 

x  

Now if we divide this by 2,  we find 
1 2

,
1 2

 −
=  
 
 

x for which it holds ' 1.=x x  

 
 
 

5.2 Example and MATLAB code 
 
Obtain the eigenvectors and eigenvalues  
of matrix A: 
 

A=[3 5;-2 -4] 

 
[X,D]=eig(A)  
 
 
 
 
 

A = 
     3     5 
    -2    -4 
 
X =   D = 
    0.9285   -0.7071      1     0 

                 -0.3714    0.7071      0    -2 

 
 
 

5.3 Exercise 

1: Compute the eigenvalues and eigenvectors of the matrix 
1 2

.
2 3

 
 
 

 

 

2: Do the same for the matrix 
1 2

.
2 4

 
 
 

 

 
3: Compare the solutions of 1 and 2 with the MATLAB output. 



Matrix Algebra                                                                                                                                        35 

 

5.4 Properties of eigenvectors / eigenvalues 
 
Because in most situations we deal with symmetric matrices, like covariance or 
correlation matrices, we give here some properties, which hold for symmetric matrices. 
 
 
1: The sum of the eigenvalues of a matrix is equal to the sum of the diagonal elements of 
that matrix. (This sum of diagonal elements of a matrix is also called the trace of a 
matrix, often denoted as tr(A)). 

Example: the eigenvalues of matrix 
1 2

2 3

 
=  
 

A  are (2 5) and (2 5),+ − so the 

sum of the eigenvalues is 4. The trace of matrix A is indeed 4. 
 
 
 
2: The product of the eigenvalues of a matrix A is equal to the determinant of that matrix. 
 

Example: for the same matrix A it holds that the product of the eigenvalues is 

(2 5)(2 5) 4 5 1.+ − = − = −  The determinant of matrix A is also 1.−  
Consequence: if one (or more) of a matrix is (are) zero, then the determinant is 
zero and the matrix is singular. 

 
 
 
3: The inner product of the eigenvectors of a matrix is equal to 0. 
 

Example: The eigenvectors of matrix A are 
1

1
(1 5)

2

 
 
 + 
 

 and 
1

1
(1 5)

2

 
 
 − 
 

. So the 

inner product is 
1

1 (1 5) 0.
4

+ − =  

 
 
 
4: If we collect the eigenvectors of matrix A in a matrix X and the eigenvalues in a 
diagonal matrix ,ΛΛΛΛ  then we can write =AX X ΛΛΛΛ , where ' .=X X I  (Here it is assumed 
that an eigenvalue and the corresponding eigenvector are in the same column of matrix 
ΛΛΛΛ  and X, respectively). 
 

Example: Let 
1 2

,
2 4

 
=  
 

A then X can be written as 

2 / 5 1/ 5 0 0
 and = .

0 51/ 5 2 / 5

 −  
       

ΛΛΛΛ   
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Then 
1 2 2 / 5 1/ 5 0 5 / 5

.
2 4 1/ 5 2 / 5 0 10 / 5

   − = =           
AX  Indeed this is equal to   

 

          
2 / 5 1/ 5 0 0 0 5/ 5

.
0 51/ 5 2 / 5 0 10 / 5

   −  
= =           

XΛΛΛΛ  

 
 
 
5: If we define for a matrix A the matrix of eigenvectors and eigenvalues X and ΛΛΛΛ  as in 
property 4, then we can write in general '.=A X XΛΛΛΛ  
 

This is easy to prove from =AX X ΛΛΛΛ  and the fact that ' .=X X I  because 
multiplying both sides of the equation sign gives the result. 

 
 
 
6: In general it holds for a symmetric matrix p p '.=A X XΛΛΛΛ  Remark, this equation also 
holds for negative values of p, or fractional values of p. 
 

Example: Let 2,p =  then 2 2( ')( ') ' ' '.= = =A X X X X X X X X X XΛ Λ Λ Λ ΛΛ Λ Λ Λ ΛΛ Λ Λ Λ ΛΛ Λ Λ Λ Λ  
 
 
 
 

5.5 Singular value decomposition 
 
 
Every matrix B(n×p) with n ≥ p, can be written as a product of matrices: 
 

B=KΛΛΛΛL ′′′′ with K ′′′′K=I  and L ′′′′L=I. 
 

K (n×p) are called the left eigenvectors of B, ΛΛΛΛ( p×p) (diagonal) the singular values, and   
L (p×p) the right eigenvectors. The columns of K are also the first p eigenvectors of BB′′′′ 
and the columns of L  are the p eigenvectors of B′′′′B, and ΛΛΛΛ2 are the (first p) eigenvalues of 
B′′′′B and BB′′′′, thus 
 

B′′′′B =LΛΛΛΛ2L ′′′′ and BB′′′′=KΛΛΛΛ2K ′′′′. 
 
 

B=KΛΛΛΛL ′′′′ is called the singular value decomposition of B. 
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Chapter 6 
 
Application in statistics: 
Multiple Regression and  
Principal Component Analysis 

 
 
 
 
 
In this chapter we discuss the basic principles of two important methods in statistics: 
Multiple Regression (MR) and Principal Component Analysis (PCA). These methods are 
the basic of a lot of other methods. 
 
 
 
 

6.1 Multiple Regression 
 
Suppose there are scores on p variables and we want to “predict” the scores on one 
variable. Then we can define the following vector / matrix 
 
y : vector of order (   1)n × ; often named: criterion variable, dependent variable 
X : matrix of order (   )n m× ; the first column of this matrix contains only 1’s, the 
              next columns of this matrix are the scores on the independent variables, or 
              predictors 
b : vector of regression weights 
e : vector of residuals 
 
The regression equation can be written as 
 
   y = b1+x2b2+x3b3+…+xnbn+e = Xb+e, 
 
where the vector y and the matrix X are known, and the vector b has to be estimated. A 
standard way of solving the vector b is by the so-called least squares method. In this 
method the sum of squares of the residuals is minimized. This means that we minimize 
 

 2

1

' .
n

i
i

e
=

=∑ e e  

So, the problem is to minimize 
 
    ' ( ) '( ).f = = − −e e y Xb y Xb  
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This function can be written as 
 

 
' ' ' ' ' '

   ' 2( ' ) '( ' ) .

f = − − +
= − +

y y y Xb b X y b X Xb

y y y X b b X X b
 

 
Now we write ' '≡a y X  and '≡A X X , then we have the function to minimize 
 
 ' 2 ' ' .f = − +y y a b b Ab  
 
One way of minimizing this function is by taking the derivatives of this function with 
respect to the unknown vector b, and equalize these derivatives to zero. 
 
According to the derivative rules as given in the Appendix we have: 
 
 ' / '∂ ∂ = ≡a b b a X y  
and 
 
 ( ' ) / 2 2 ' .∂ ∂ = ≡b Ab b Ab X Xb  
 
So we have the equation 
 
 / 2 ' 2 ' 0.f∂ ∂ = − + =b X y X Xb  
 
From this equation it follows 
 
 ' ' .=X Xb X y  
 
Now if we assume that the vectors of columns are a set of independent vectors, the 
determinant of 'X X  is unequal to zero and so we can write for an estimate of b 
 

 1ˆ ( ' ) ' .−=b X X X y  
 
 
 

6.2 Example and MATLAB code 
 

Let matrix be 

1 .2 .3

1 .3 .2

 and .1 .1 .1

1 .5 .6

1 .4 .4

   
   
   
   = =
   
   
   
   

X y   



Matrix Algebra                                                                                                                                        39 

 

The regression weights in the regression equation = +y Xb e  can then be estimated as 
1ˆ ( ' ) ' .−=b X X X y  Note that the first regression weight in b is constant in all equations. 

This weight is called the intercept. We can verify now 
 

 
5 1.5

' .
1.5 .55

 
=  
 

X X  

 
Furthermore, ' 2.75 2.25 .5.= − =X X  So 

 

 ( ) 1 .55 1.5 .55 1.5 1.1 31
' ' 2 .

1.5 5 1.5 5 3 10.5
− − − −     

= = =     − − −     
X X  

 
And 
 

 

.3

.2
1 1 1 1 1 1.6

' ..1
.2 .3 .1 .5 .4 .59

.6

.4

 
 
    
 = =   
    
 
 
 

X y  Thus .6.1=y  

It follows 
 

 
1.1 3 1.6 .01ˆ .

3 10 .59 1.1

− −    
= =    −    

b  

 
We write the estimated scores on the dependent variable y as 
 

 ˆˆ = =y Xb

1 .2 .21

1 .3 .32
.01

.1 .1 .10
1.1

1 .5 .54

1 .4 .43

   
   
   − 
   = 
    
   
   
   

 Now 



















−

−
=



























−
−

−
=

       

    

    

     

Xv

1

10

3

15

4

3

11

26

01

31

 

 
For each case in this system we can write 
 

 1 2 2
ˆ ˆˆ ,i iy b b x= +  

 

where 1̂b  is the estimate of the intercept. 
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For each of the cases we can write 
 

 

1 11 1 12 2 1 12

2 21 1 22 2 1 22

3 31 1 32 2 1 32

4 41 1 42 2 1 42

5 51 1 52 2 1 52

ˆ ˆ ˆˆ (1.1) .21

ˆ ˆ ˆˆ (1.1) .32

ˆ ˆ ˆˆ (1.1) .10

ˆ ˆ ˆˆ (1.1) .54

ˆ ˆ ˆˆ (1.1) .43

y x b x b b x

y x b x b b x

y x b x b b x

y x b x b b x

y x b x b b x

= + = + =

= + = + =

= + = + =

= + = + =

= + = + =

 

 
A picture of this regression system can be written as 
 

 
Remarks: 
 
1: The difference between ˆ and  are the errors (residuals) .i i iy y e  These are depicted in the 

picture as the vertical line segments. In matrix notation we have: yye ˆ−=  
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2: The regression is chosen in such a way that the sum of squares of the errors is minimal. 
So here we have for the minimum value of ∑==

i
ieeef 2' , and 

 
 2 2 2 2 2 2(.3 .21) (.2 .32) (.1 .10) (.6 .54) (.4 .43) .027.i

i

f e= = − + − + − + − + − =∑  

 
3: To compare this with the output of SPSS we find 
 
Regression 
 

Model Summary

.904a .818 .757 9.487E-02
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Xa. 
 

ANOVAb

.121 1 .121 13.444 .035a

2.700E-02 3 9.000E-03

.148 4

Regression

Residual

Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Xa. 

Dependent Variable: Yb. 
 

Remark: 
SSregression )ˆ()'ˆ( yyyy −−= ;SSresidual )ˆ()'ˆ(' yyyyee −−== ;SStotal )()'( yyyy −−=  
 

Coefficientsa

-1.00E-02 .099 -.101 .926

1.100 .300 .904 3.667 .035

(Constant)

X

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: Ya. 
 

 
 
4: In MATLAB, the regression weights may be obtained with: 
 
X = [1 .2;1 .3;1 .1;1 .5;1 .4]; 
 
y = [.3;.2;.1;.6;.4]; 
 
b = inv(X'*X)*X'*y 

 
b = 
   -0.0100 
    1.1000 
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6.3 Principal Component Analysis 
 
Let X be a matrix of scores of n subjects on m variables, so X has the order (   )n m× . We 
want to reduce this matrix to, say, one vector y. So we try to find a linear combination of 
the columns of X which represents the data in some optimal way. This can be written as 
 
 .=Xb y  
 
Interpretation of this model: 
--- y is an weighted sum of variables X (means 0) 
--- the vector y is unknown, in opposite to the regression model. 
 
We have chosen here that the means of the columns of X are zero. So ' 0 '.=1 X  Then the 
sum of squares of y is 'y y  and the variance is ' / .ny y  
 
Now we look for the weights b such that the variance of y is maximal. This means that 
we look for a y such that y discriminates optimally between subjects. 
 
The function to be optimized is 
 
 ' ' ' .f = =y y b X Xb  
 
Because this function is unbounded, we have to put a restriction on b. The restriction is 

' 1.=b b  By defining ' ,≡A X X we find by the result given in the Appendix, that b is the 
eigenvector of A corresponding to the largest eigenvalue of A. 
 
 
 
 

6.4 Example and MATLAB code 

Let 

2 1

0 2

1 0

1 1

− 
 
 =
 −
  − − 

X . We will reduce this matrix to one column vector as discussed above.  

 
It turned out that we have to optimize ' ' ,f = b X Xb  under the restriction that ' 1.=b b  
Therefore we have to find the eigenvector of 'X X  corresponding to the largest 
eigenvalue of 'X X .  We find  
 

 

2 1

2 0 1 1 0 2 6 1
' .

1 2 0 1 1 0 1 6

1 1

− 
 − − −    = =    − − − −   
  − − 

X X  
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For the eigenvalues we have to solve 
 

 26 1
36 12 1 0.

1 6

λ
λ λ

λ
− −

= − + − =
− −

 

 
This gives the solution 7 and 5.λ λ= =  
 
For the eigenvector corresponding to the largest eigenvalue we have to solve 
 
 1 2 2 1(6 7) 0 .b b b b− − = → = −  
 
 

So the solution of b is 

1

2ˆ .
1

2

 
 
 =

− 
 
 

b  This means that the optimal y is 

 

 

3

22 1 1
2

0 2 2ˆ ˆ .2
1 0 1

1
21 1

2
0

 
 
 −   −   
   = → =
  − −  −    − −     
  
 

Xb y



















−
≈

0.0

7.0

4.1

1.2

(see bends in picture next page) 

 
 
 

Remark 1: 

3

2
2

3 2 1
ˆ ˆ' 0 7,2

2 2 2
1

2
0

 
 
 

− 
− −  = =    − 

 
  
 

y y  which is indeed the largest eigenvalue 

of ' .X X  
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Remark 2: A picture of this PCA is. 
 
 

 
 
 
 
 
3: In MATLAB, we may obtain the  
eigenvalues with: 
 
 

X = [2 -1;0 2;-1 0;-1 -1]; 
 
eig(X'*X) 
 

ans = 
    5.0000 
    7.0000
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6.5 Exercises 
 
1. Let the scores of 5 subjects on two independent variables be given in matrix  
 

 

1 1

1 3

,1 0

1 2

1 4

 
 
 
 =
 
 
 
 

X  and the scores on the dependent variable be given in vector 

2

1

.4

3

5

 
 
 
 =
 
 
 
 

y  

 
1a: Carry out a multiple regression by estimating the regression weights. It holds 

1ˆ ( ' ) ' .−=b X X X y  
1b: Make a plot of the second column of X and the observed and predicted y scores. 
Interpret the results; show what the residuals are and compute the sum of squares of 
the residuals. 
1c: Compare the results in 1a and 1b with the SPSS output. 

 
 
 

2. The scores of 5 subjects on two variables are given in matrix 

1 1

2 1

.0 0

2 2

1 2

− 
 
 
 =
 − 
 − − 

X  

 
2a: Carry out a Principal Component Analysis with one principal component. 
2b: Make a plot of the first principal component and the two observed variables. 
Interpret the results. 
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Appendix 
 

1: Let ' ,f = a x  then we can write ( )
1

1 2 3 2 1 1 2 2 3 3

3

.

x

f a a a x a x a x a x

x

 
 = = + + 
 
 

 Now it 

holds 
 

 
1 1

2 2

3 3

/

/

/

f x a

f x a

f x a

∂ ∂ =
∂ ∂ =
∂ ∂ =

 

 
In vector/matrix notation we can write this as 
 

 
1 1

2 2

3 3

/

/ / .

/

f x a

f x f x a

f x a

∂ ∂   
   ∂ ∂ = ∂ ∂ = =   
   ∂ ∂   

a  

 
 
 
 
2: Let ' ,f = x Ax  where A is a symmetric matrix, then we can write  
 

( ) 11 12 1 2 2 2 2
1 2 11 1 21 1 2 12 1 2 22 2 11 1 12 1 2 22 2

21 22 2

2 ,
a a x

f x x a x a x x a x x a x a x a x x a x
a a x

  
= = + + + = + +  

  
 

 
because A is a symmetric matrix. Now it holds 
 

 1 11 1 12 2

2 12 1 22 2

/ 2 2

/ 2 2

f x a x a x

f x a x a x

∂ ∂ = +
∂ ∂ = +

 

 
In vector/matrix notation we can write this as 
 
 

 11 12 1

21 22 2

/ 2 .
a a x

f
a a x

   
∂ ∂ =    

   
x =2Ax 
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3: Optimizing the function 'f = b Ab  under the restriction ' 1=b b  can be done by 
optimizing the following function (this function is called the Lagrange function): 
 
 * ' ( ' 1),f λ= − −b Ab b b  
 
where λ  is called the Lagrange multiplier (λ ≠0).  
Taking derivatives of this function with respect to b and λ, and  equalizing to zero gives 
 
 * / 2 2 0f λ∂ ∂ = − =b Ab b  (A.1) 

 * / ' 1 0f λ∂ ∂ = − =b b  (A.2) 
 
From (A.1) it follows .λ=Ab b  In addition with (A.2) it follows that b is an eigenvector 
of A, such that the sum of squares of b is equal to 1.  
 
Because we optimize ' ' ' ,f λ λ λ= = = =b Ab b b b b  the optimum of f is equal to the 
largest eigenvalue of A and b is the corresponding eigenvector. 
 
 
 
 
 
4: If we have two vectors x and y, then geometrically speaking there is an angle θ  
between the two vectors. It can be proven that the cosine of this angle is 
 

 
'

cos .
' '

θ = x y

x x y y
 

 

Note that '  and 'x x y y  are the lengths of the vectors x and y, respectively.  

In addition, if x and y have means zero (or u′′′′x=0 and u′′′′y=0), then cosθ=cor(x,y). 
Furthermore if x and y are standardized, i.e. vectors with mean zero and variance 1 (or 
x′′′′x/n=1 and y′′′′y/n=1), then cosθ=cor(x,y)=x′′′′y/n. 
 
 
 
 


