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Introduction

In the bachelors / masters program for Psycholodyeiden we have an extensive
program for Multivariate Analysis in general. Tipiogram consists of courses in:
Multivariate Analysis, Test Theory, Multidimensidr&caling, Cluster Analysis,
Computational Statistics, Structural Equations Mede

The practice in teaching these courses is thaestadearn how to use some statistical
packages for carrying out the analyses. Theseag@skare very welcome. However, a
disadvantage is that students are not familiar thi¢hbasic principles of these techniques.
This is in particular important for students whe ailling to learn more than “pushing
buttons”. We think of students who want to know Ifasic principles behind these
methods and want to extend their knowledge to atber techniques. For these students
Matrix Algebra is absolutely important. Therefonetlhis monograph we give an
introduction to Matrix Algebra.

This is not a course for mathematicians and wemnailgive rigid proofs. Mostly we only
give simple examples. However, we think that théemia we present is sufficient for
students who want to know the basic ideas.

In each chapter the main theory is given. Becausleda courses following to this course,
we will give in this course sometimes the MATLABd=oof the problems. Also, in cases
where it is easy to compare the solutions with SRI8SSPSS output is given too.
However, the main purpose of this monograph isieustand some basic principles of
matrix algebra and not the use of computer programs

The structure of the chapters is as follows: ed@pter consists of the theory and ends
with some exercises. The solutions of the exer@segjiven in the last part of the
monograph.
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Used Notation

Matrices: capitals, bold. Examples; B, X,...
Vectors: lower case, bold. Examplesb, x,...
Scalars: lower cas&xamplesa, b, x,...
Random variables: Examples: A, B, X,...

If matrix operations are written, then it is assdrtieat these operations exist. For
instance, the product of two matricksandB, AB, means that the number of columns of
A is equal to the number of rows Bf
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Chapter 1

Some basics

Data can be presented in a special kind of talde;@alled matrix. Matrices are useful
with linear algebra.

1.1 What a matrix is

A matrix will be denoted by capital Latin letteli&e A or B, and is notated as

&, &, . . Qy

& Ay . . Ay

A= ,
&

8y B, . . A

where a; is element in row and columr). Mind the order of the indices. The order of
the matrix is denoted a@& x p). Here, we will consider twkinds of matrices, namely
square matrices, for examplg2 x 2), (3 x 3)or (i x i) in general, andectangular
matrices, for example(2 x 4) or (3 x 5). Examples of square matrices are

1 2 3 1 2 3
A=|5 4 1| asymmetric matrix, A=|2 4 5| symmetric matrixa; =a;,
3 6 2 3 5 2
100
A=/0 4 0| diagonal matrixa, =0 fori# j,
0 0 6
100 0 0O
A=|0 1 O] identity matrix, A=0 0 O] null matrix.
0 01 0 0O
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Thetranspose of a matrixA is denoted byA'. An example:

Sometimes the transpose of a matrix is denotedi’adf the order of a matrix
is (n x p), then the transpose has ordgrx n).

Besides matrices there amrtors andscalars. Example vector:

X

x=| " | column vector, and'=(x, X, . X,) row vector.

Example scalar:
x=(x) scalar, number.

1.2 Simple operations

Let the following matrices and vectors be defined

12 3 4 3 1 4
A:(g ) 1j,B=3 4|, a=|2|andb=|5].
5 6 3 6

Addition of two matrices is defined if both matrices have $ame number of rows and
the same number of columns, hence the order ohttdaces is equal:

1+4 2+3 3+ 5 5
A+B'= = ,
3+3 2+4 1+ 6 6 6
A +B = not possible, the order of the matrices are noaktp each other.

For subtraction the order of the matrices must also be equal:

1-4 2-3 35 (-3-1-
A-B'= = .
o oe v oo T2 nd
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Theproduct of a scalar and a matrix is defined as:

CA:C(all a12 alSj:(Call Ca'12 Calfj
a21 a22 a‘23 CaZl Ca22 Ca'2

An example; ifc =3 andA is as above, then

1 2 3 3 6 9
cCA=3 = .
3 21 9 6 3

Theproduct of a row vector and a column vector, with an equahber of elements, is
defined as:
b

=ab +ap,+..+ab

An example; ifa andb are defined as above, then

4
ab=(1 2 3 5=X4 x5 3% 6 4 16 18 -
6

The pre multiplication of a vectorb by a matrixA is defined if the number of columns of
A is equal to the number rows ofb:

Ab_ all a'.|.2 a13 bl — alpl+alp 2+a19 3
B (321 a22 a23j E _(a2pl+a 29 2+a' Jg J

There is a similar definition fdsA, thepost multiplication of b by A (if the number of
elements irb equals the number of rowsA). An example; ifA andb are defined as
above, then

apo(l 23 g_ (Ix 4)+ (% 5) (% 6) ( 3
13 21 6_(3><4)+(2<5)+(1<6_ 2
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The pre multiplication of a matrixB by a matrixA is defined a€\B if the number of
columns ofA are equal to the numbef rows ofB:

1 bl
o % % b (sbirabirabaabzah zan)

b, by|=
&, Ay Ay aptab,ral,abh fab salb,
b, b,

There is a similar definition fdBA, thepost multiplication of B by A.
An example; ifA andB are defined as above, then

AB_(l 2 3}2 j:((l"“)* (%3 (X5 (3 R 4 B 3):( 25 3!
5 B4y (%3 (k5 (33 (R 4 & 6) 23 2

1 00
LetC={0 1 O}, an identity matrixPre (or post) multiplying a matrix with an
0 0 1

identity matrix results in the same matrix:

1 00
1 2 3 +0+0 020 G 6 1 2 ¢
AC= 0 1 0= = .
3 21 1 3+0+0 -2 0 6 6 3 2

00
1 00
LetD=|0 2 0], adiagonal matrixPost multiplying a matrix with a diagonal matrix
0 0 3

results in a matrix in which the columns of thegoral matrix are multiplied with the
diagonal elements of the diagonal matrix:

0

100
1 2 3 1+0+0 O-4 0 O @ 1 4
AD = 0 2 0|= = _
3+0+0 OF4 0 6 8 3 4 f

Pre multiplying a matrix with a diagonal matrix results in a matn which the rows of
the original matrix are multiplied with the diagdeéements of the diagonal matrix:

1 0 0)4 3 400 3F G 4
DB=|0 2 0f 3 4= 0+6+t 0 G & O=| 6
0 0 3)\5 6 o015 6 6 1 15 1%
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In general, the following properties hold:

A+B =B +A
A-B=-1B-A)
AB #BA .

1.3 Examples and MATLAB code

To define a matrix in MATLAB one must specify dilet elements per row between
square brackets. The different rows need to beratgmhby a ‘;’. Of course, all rows must
be of equal length. The MATLAB code to define a nxaB, is:

% Define matrix B B=
B=[123541362] 1 2 3
5 4 1
3 6 2
In a similar way vectors can be defined by:
% Define vectors x and y X =
x=[1;2; 3; 4, 5] 1
y=[12345] >
3
4
5
y =

The transpose of the matiican be obtained with:

% Transpose of B ans =

B 1 5 3
2 4 6
3 1 2

Note: when the result of a statement is not assigned
to a specific source, MATLAB simply refers to the
obtained result as ‘ans’.
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If we define
-1

1 2 3 4 3 5
A= , B= ,Yy=|0] andc=3
321 3 4 6 5

then, theaddition of the matriceg\ andB is given by:

% Add A and B C=
C=A+B 5 5 8
6 6

Subtraction of both matrices can be done by:

% Subtract A and B D=
D=A-B 3 -1 -2
0 -2 -5

Multiplication of the two matrices:
% Multiply A and B = F=
E=A"B 25 29 13 14 15

F=B"A 23 23 15 14 13
23 22 21

Multiplication of matrix A and vectoy / scalarc:

% Multiply Aand y or c ans = ans
A*y 5
C*A -1

o w
[e))]
w ©

Let n denote the number of rows apthe number
of columns, then the order of matéxcan be
determined by using theize(A) ’ function:

% Order of A n=
[n,p] = size(A) 2



Matrix Algebra

1.4 Exercises

Let the following matrices and vectors be defined:

340 20 3 21 3
A= B=|1 O C= D=

6 4 2 3 41 6

4 2

1 3

-1 0 3
X = u=(2 3 v=

6 -2 4

1 -1

1. Compute by hand:

a.A+C andA-C
b. A+BandA+B’
c. AB

d. AC andAC’
e.u'Du

f.u'v

g.(A+C)’

h. 3C

i. BA

J. X'X

k. UX andXu’ ; vX andXv

2. Compute the above exercises with MATLAB and coraghe results.

}

10
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Chapter 2

The determinant of a matrix

The determinant is a function defined on squareio®st It is uniquely defined.

2.1 What a determinant is

Let A be a square matrix, then the determinar & denoted a{5A| or det@). For a (2x
2) matrixA, the determinant is defined as

8,

= a8, " A
&, Ay

4 1
Example: IetA=(1 2} then|A|= (& 2 (¥ 1F 7

Definition: the minor of elemeng; is the determinant of the matrix formed by remgvin
row i and column of the matrixA.

Example: letA be

a, a, a;
A=la, a, ay|
83 43 Aadg

a22 a‘23
2 a‘33
This are the determinants of two 2x2 matrices.

a21 a'23

then the minor ofy,; is
1 a33

and the minor of,, is
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Example: LeA be

>

I
w NP
R NN
N %)

1
The minor of,, is 3

j:(1x4)— (% 3E-5

Definition: The cofactorc; of elementa; is ¢; = (-1)"/ x minor, ).

Example (see example abovg):= (-1)**x-5=1x-5=-5
Definition: the determinant oA is:
| A= a;,c,,+a,,C;, +@,,C5 in terms of row 1
= a;,C;,+a,,C;, +a,,C,; in terms of row i

=@,;C,;+a,,¢ +a,,Cy; in terms of column j

Example (see example above):

Element minor cofactor Elementofactor
=1 2 1 7 7 7
&= 1 4
=2 2 1 5 5 10
e = 3 4
2
a,=3 ‘ j =-4 -4 -12
3
A|= -15

Exercize: ComputfA| by means of the elements of column 2.
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2.2 Example and MATLAB code

To obtain the determinant of a square matrix:

% Determinant of A ans =
A=[123;221;314]; 15
det(A)

2.3 Exercise

Let matrixA, B andC be defined as

2 1 3 2 1 2 1
A=|3 2 4,,B={0 0 0 andC=| 4 2
11 2 11 2 11

1. Compute the determinantAf B, andC, i.e. |A| [B|, and €|. Use different rows or
columns and compare the results.

2. Compute the determinant of the following 4x4 nmat
1 2 3 4
A =

0o 2 1
3 2 1
1 2 1

NI

3: Check the results with MATLAB.

2.4 Properties of determinants

1: The determinant of a matrix is equal to the uheiteant of the transpose of the matrix.
1 2 1 3
Example:A = (3 4} thenA = ( 5 4] It is easy to verify thBl1A| = |A I|.

2: If one row or column o is the null vector, thefA| =0.
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Let row/column i be consist of zero elements, tthendeterminant can be
computed as the sum of products (see definitiohgresthe products are the
elements of row/column i times its correspondinfactor. So all the products are
zero and so the determinant is zero too.

3: |AB| =|A|B|
(1 2} (2 —3}
Example:A = B=
3 4 4 5
|A|=4-6=-2

B|=10- (-12)= 2z
10 7
AB =
(22 11}

|AB|=110- 154= - 44 This is indeedA|[B|.

4: The determinant of an under- or upper triangoiatrix is equal to the product of the
diagonal elements.

1 2 3
Example:A={0 4 5].
0 0 6
2 1 1
|A|:Ox - 0x + OX
4 0 0
Takerow3andfind = 0 0 + 6(1-4x0
= Bx &1,

which is the product of the diagonal elements.

Notice that the diagonal matri& = has the same determinant.

o O -
o b~ O
o O O



Matrix Algebra 15
5: If B is formed by interchanging two rows or columnsraftrix A, then|B|=—|A|.
1 2 . .
Example: LetA = 2 4 then|A| =~ 2 Interchanging row 1 and 2 #f gives
3 4 .
B :(1 2jand|B| = 2which is indeed-|A|.

A more elegant proof is:

B= (cl) ;JA and so according to property 1 it ho|8| :‘2 j|A| =-|Al.

6: If B is formed by multiplying one row or column Afby a constark, then|B|=k|A|.
1 2 s .
Example:A = (3 4} thenA| =~ ‘Multiplying row one withk = 3, the

3 6

B|= ‘3 4‘ =12 - 18 = -6, which is indeed3x | A |

Another way is

B :(2 cl)jA and so according to property 1 it ho|8| :‘g j|A| = 3x|A|.

7: 1f B is formed by multiplying one row (or column) Afwith a constank and adding
this to another row (or column) &, then|A| =|B|.

Example:
1 2 L . . .
A = (3 4}’ then|A| = - 2. Multiplying row two wittk = 2, ahadding this

71
to row 1, ther1E3|:3 4= 28 38- 2.

Another way is



Matrix Algebra 16

B :((1) ijA and so according to property 1 it he|8| :‘Cl) j|A| =|A].

8: If two rows or columns oA are equal to each other, then the determinaAtisfO.
If row/column i is equal to row/column j of matri, then by applying property 7

row/column i of matrixA can be made a zero vector without changing the
determinant oA. So by property 2 the determinantfofs zero.
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Chapter 3

The inverse of a matrix

The inverse of a square matAxs notated aé&™ and is defined as
ATA=AA"=I.

The inverse of a matrix may be used for solvingteo$ linear equations.

3.1 Linear equations
Suppose we have two linear equations with two unkiso As an example we have

2% +3x,=5 (3.1)
3x, —6x,=-3 (3.2)

This set of equation can be written&s =b, where

S

For a solution of this set of equations we folldwe following steps:
Stepl: multiply (3.1) with 2; this gives

4% +6x, =10 (3.3)
3x, —6x, = -3 (3.4)

Step2: add (3.3) to (3.4); this gives

X +0x,=7 (3.5)
3x, —6x,=-3 (3.6)

Step3: divide (3.5) by 7; this gives

X +0x,=1 (3.7)
3x, —6x,=-3 (3.8)
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Step4: divide (3.8) by 3; this gives

X =1 (3.9)
X —2%,=-1 (3.10)

Stepb5: subtract (3.9)-(3.10); this gives

x =1 (3.11)
2%, = 2 (3.12)
Step6: divide (3.12) by 2; this gives
X =1 (3.13)
X, =1 (3.14)

1
So the solution ix = (J

We do now all these steps by matrices. We firghded super matrix

(A|b)=(:29, —36 —53)

We will show that all the steps above can be dgngre-multiplying this matrix by an
elementary matrix (i.e. a matrix with elementaryr@perations: addition and
multiplication of rows) (Namboodiri,1984, p.53).

Stepl:
2 0\(2 3 5) (4 6 1
0 1)\3 -6 -3 (3 -6 -
Step2:
1 1)(4 6 100 (7 0 7
0 1|3 -6 -3 (3 -6-
Step3:
17 (7 0 7 (1 0 1
0 1)\3 -6 -3 (3 -6 -
Step4:

o s o 471
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1 0)f1 0 1) (10
1 -1)\1 -2 -1 (0 2
1 0Y)1 01 (10
0 1/72)l0 2 2 |01

So the third column gives the solutionxof

Stepb5:

Remember: the problem was to solke =b . This was done each step by pre-
multiplying a matrix with an elementary matrix.tlne end we used 6 elementary
matrices, so we can write the procedure as:

EEEEEEAX=EEEEEED
CAx =Cb

| x =Cb.

So CA =1,, the identity matrix of order ( 2). The matrixC is called the inverse &.
This inverse oA will be noted asA™. So the solution of can be written as

x=A",
where it holds:
Al =EEEEEE,
For the example it holds:
A_lz(l 0](1 Olj(l 09[1/7 j{ 1 1( 2 Ez( 217 1/7;.
0 1/2){1 -1{ 0 1/ 0 0 0 1/7- 2/21]
Indeed, if we pre multiphp with A™, then we get:

X = 2/7 17 ° = , which is indeed the solutic
1/7 -2/21\ -3
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3.2 Alternative
Generally, we can write
1
AT =—(A°),
A)

where A° is the matrix with co-factors (see Chapter 2.1ytirermore, the determinant of
A must be unequal to 0.

Example: See matrii above:
2 3

A :‘ J =-21
3 —_

-6 -3
A° :( 3 2 J = (Ac)', becausé ¢ is symmetr So the inverse oA is

Al 1 (-6 -3) (6/21 3/21\ ( 2/7 17
-21(-3 2 3/21 -2/2 1/7 - 2/2K
which is indeed the inverse Afas shown above.

3.3 Examples and MATLAB code

To obtain the inverse of a square matrix:
A=1[23;3-6] A=
2
inv(A) 3 8
ans =

0.2857 0.1429
0.1429 -0.0952

Solving Ax =b for x can be obtained with:

b =[5;-3] b=
. 5
x = inv(A)*b 3

1.0000
1.0000
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3.4 Exercise

3 6
la: LetD be defined as in the Exercise of Chapter 1Di.:e(6 J. ComputeD™, and
check thatD™'D=DD ™ =1,,.

2 3 1
1b: Solve the systemAx =b, where A :(4 9} andb :(Zj

. . 2 3
1c: replace in 1b matri& by A :(4 6}

2: Given matrixA and vectob:

2 3 4 1
A=|0 2 1 |andb=|2].
1 2 1 1

Solve the vectox from the equation8x=b by means of elementary row operations.
ComputeA™ by the elementary matrices. Compaté also in the alternative way and
compare the results.

3: Compare the results with the MATLAB output.

3.5 Properties of the inverse
1: The inverse of a nonsingular matrix, i.e. a matith determinant unequal to O, is
unique.
The definition of the inverse i8™ =i(AC)'. For a nonsingular matrix it holds

A

that the determinant is not O, so the inverse iguaty defined.

2: The inverse of the inverse of matAxs equal to matri.
Proof: (A™) A" =1 - (AHTATA=A - (A=A

3: (AB) =B A
Proof: If (AB) " =B™A™ then alsoB"A™*(AB) =I and(AB B "A "'
- B"A™(AB)=B{ATAB =B (B B B
-~ (AB)B"AT'=ABB MDA '=A (N TTAA '3
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4: If A is nonsingular, i.eAl#0, thenA™ is also nonsingular.

IA A7 [=|A JAY=]11=1, thus A~ :ﬁ 0

5: The inverse of the transpose of ma&ixs equal to the transpose of the inversé of
(A" isthe inverse ok So it must holdA'(A™)'=I and(A *)A o
- A'(A?) =ATA =
— (AT)A'=pA =l
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Chapter 4
Linear (in)dependence of vectors

4.1 Linear (in)dependence
Leta andb two vectors. A linear combination of these vectan be written as:
ka+k,b,
wherek, andk, are scalars, which are not both equal to 0.

Definition: A set of vectors is linearly dependent if ondhaf vectors can be written as a
linear combination of (some of) the other vectors.

Example: Suppose the following vectors are defined:

1 2 8 11
a=|3| b=| 6| c=| 4 d=| 1
5 10 2 17

This set is linearly dependent because it holds
b =2a.

General A set of vectors is linearly dependent if a comaltion of vectors is equal to the
null vector and not alt's are equal to 0. So dependence if

Ak=ka, +k,a,+...+k a = 0 andnot all k; =0.

A set of vectors is linearly dependent if a combination of vectors is equaheortull
vector and alk's are equal to 0. So independence if

Ak=ka, +k,a,+...+k.a = 0 andall k =0.

2 1
Example 1: Are the set of vecu%ij and(gj linearly dependent?

(oG-

Investigate the set
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2k ), (%) _(0
5o}
2k +k,=0
4k, +3k,=0

This set can be written as
or

So it follows
k, =-2k O 4k, — 6k, = 000 - k,= Oandk,= O

So there is no solution of the set of equationshich one of the scalaksis
unequal to 0. Conclusion: the set of vectors igpahdent.

2 6
Example 2: Are the set of vectoEij and (12j linearly dependent?
2 6 0
+k = |
[l
This set can be written as
2k, N 6k, ) (O
4k ) \1%,) o)
2k, +6k, =0
4k +1%, =0

Investigate the set

or

So it follows
k, =-3k, 00 -1X%,+1%,= 000> &,= O.

So each value ok, suffices(e.gk,=1 (andk,.=-3). And the same holds fdx.
Conclusion: the set of vectors is dependent.

Example 3: Ifa is the null vector, then the s@,a,..a, )is dependent.

If a is the null vector, then for each scakar(also non zero) it holdka =0,
and so the set of vectors is dependent.

Example 4: Ifa = a,, then the sefaa,..a, )is dependent.

If k =-k;,thenka +(-k;)a, =0, and so there are scald¢sandk; unequal to
zero which holds. And so the set of vectors is ddpat.
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4.2 Geometry and interpretation
in two dimensions

Definition: The rank of a matriA is the size of the largest sub-matrixAgfwhich is not
singular. Notation: K).

* Rank of a matrix can never be larger than the minmnof the number of rows or
columns of a matrix. Example: if the order of a nxais (4 x 6), then the rank
cannot be larger than 4.

Example 5: Let the following vectors be defined
1 2

a= b= .
2 4

This set of vectors is dependent, becduse?a. The matrixA, formed by the two

vectors is
1 2
A= ,
2 4

which is rank 1 becaus}é\| =0. The two vectors are presented in the figure
below:
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The matrixB, formed by the two vectors is

e[, 3}

which is rank 2 becausB|F-14. The two vectors are presented in the figure
below:

Example 6: Let the following vectors be defined
1 2 2
a=|1| b=|2| c=| 2
2 2 1
The matrixA, formed by the three vectors is
1 2 2
A=l1 2 2
2 21
The determinant isA| =1(2- 4)- 2(1- 4¢ 2(2 4F- 2 6 & (
So

e matrix A is singular
* 1(A) is smaller than 3

1 2
* the (2x 2) sub matrix formed by rows 2 and 3 and columasd 2 is[2 2] , Which

is not singular. So A) = 2.
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4.3 Consistent set of linear equations:=b
Let the following set of equations be given

2%+ X, =9 (1

3 +6X,+x,=1 (2)

5, +7X,+X,=8 (3
Then it follows

2X+X%=5 (1)

2t x%=7  (3)-(2

Obviously there is no solution for this set of euas, i.e. the set of equations is
inconsistent

In general A set Ax =b is consistent if and only if (A ) =r (A | b).

We may write the example above as

>
I

g ow N

N o .

=)
®
5
&
I

|A|=2(6-7)-1(3- 5 (
r(A)<2

3 6
e the sub matrix formed by rows 2 and 3 and columasd.2 is{5 7}, which is

not singular. Sa (A) = 2.
2 1 05
- (A|b)=|3 6 1 1
57 1 8
e The matrix formed by columns 1,2 and 4 is

a w N
N o e
© O

* The determinant of this matrix &(41)— 1(19%+ 5¢ 9 82 19 48 1
« Sor(A|b)=3.

 Sor(A)#r(A |b) and the set of equations is inconsistent.
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5

Example: letA be as above and let=| 1 |. Investigate whether the set of equations is
6

consistent or not.

The set of equation can be written as

2%+ %, =5 (1
3 +6x,+x,=1 (2)
5, +7x,+X,=6 (3

Then it follows

2x+%=5 (1)
24 +% =5 (3)-(2

Obviously, there is just one equation with two umkns. So there are many
solutions. For instance,

=000 X%x,=5
X =100 x,=3

etc.. The set of equations is now consistéhts can be verified by checking that
r(A) =2 (as we saw before), amfA |b)=2, also

Possibilities of the solution ohx =b  (whereA is a_squarenatrix)

1: no solution: inconsistent set of equations. Hiehelds: r(A) # r(A |b)
2: one solution: consistent set of equatiar(gy) =r (A |b)and|A| 0

3: many solutions: consistent set of equatiarng,) =r (A | b) and A|=0 (thus A
is singular).
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4.4 Examples and MATLAB code

Investigate the rank of the matix
A=[123;132;114]
inv(A)
rank(A)

Next, form a set of linear equations
and determine rank:

bl =[1;2;0]
C=[ADbl]

rank(C)

Again, form a set of linear equations:
b2 =11;2;3]
C=[ADb2]
rank(C)

A=
1 2
1 3
1 1

AN W

Warning: Matrix is singular to
working precision.

ans =
Inf Inf Inf ans =
Inf Inf Inf 2
Inf Inf Inf
bl = C=
1 1 2 3 1
2 1 3 2 2
0 1 1 4 0
ans =
2
b2 = C=
1 1 2 3 1
2 1 3 2 2
3 1 1 4 3
ans =
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4.5 Exercises

1: Are the following set of vectors dependent alependent?

GO0 O

3 2 1
1 3 2
2 3 -6
2 8 -1
1c 1d: 1 0 3
-1 9 2
-4 |-1| | -8
6 10) (-2
1 -1 7
6
2: Is the vector 10 | a linear combination of the following vectors
-2
1 2 -1
3 8 9] *
2) \-1 2
5
3: Is the vector 1 | a linear combination of the following vectors
8
2 1) (0
3 6 (I
5 \7 1

4: Investigate the linear systeAx =b, that means are there zero, one or many solutions
of the system?

1 2 3
4a: withA=|1 3 2| andb =
11 4

1
4b: the same as in 4a, but now witl=| 2 |.
3
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5: Are the following set of vectors dependent aleipendent? Determine the rank of the
corresponding matrix with columns the given vectors

1 2 0
1 2
5a: 5b:| 1 2 0
2 4
2 2 0
1 2 1
! 1 0 0 2 2
5c:| 0 2 1 5d: ) 0 5
1 0 2
0 1 -1
2 0 1 0
1 0 2
0 1 -1 0
5e: 5f: | 2 1 1
1 2 -1 1
1 0 -1 3
0 -1 1 2

1 1 2
6: Is the vecto(BJ a linear combination of the vecto{rszj d{n j?

7: The null-space of a matrix is the set of all vectors for which it holdsAx =0.

1 2
7a: What is the null-space &f = (3 4}?

1 2
7b: What is the null-space & = (3 6j?
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Chapter 5

Eigenvalues and
eigenvectors

5.1 Theory
A very important set of equations is
AX = X, (5.1)

whereA is a square matrix. The vectors called an eigenvector 8f, and A is called an
eigenvalue oA\. To solvex and A in (5.1) we write

AX=AX - AX—-Ax =0 =

(A- Al X =0. 52)

Obviously, one solution fax is the null-vector. This solution is called a taivsolution.
To find non trivial solutiong must be in the null-space &f - Al , and so

|A-A1|=0, (5.3)

see exercise 7 of chapter 4. From (5.2) we caredbk eigenvalue(s) of matix

3 5
Example: LetA :( j
-2 -4

A =
ThenA—-Al = 35 - 0 = 3 ° . Now A must be solved
-2 -4 0 A -2 —-4-A

from the equation

I
o

3-1 5
2 -4-)
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So
(3-A)(-4-A1)-5(F2)= 0-

-12-3+ N+ A*+10= 0~
A2+A-2=0.

This equation is called the characteristic functe see in this example that
there are two possible solutions bf

In general, if matribA is of order (p x p), then there are in principfeeigenvalues.
These eigenvalues may all be different, or some Ibeagqual to each other, or some may
be imaginary. In the example above we find twoedéht solutions forl , namelyA =1
and A =-2.

Corresponding to each eigenvalue there is an egg¢orn Such an eigenvector can be
solved from (5.2). For the example above we findtie eigenvaluel =1:

(% A P HE A

This gives the equations

o

2x,+5%,=0 1,
-2x-5%,=0 (2

From (1) we findx, = —5/2x,. (Notice that (2) gives the same solution. Why®)nfthis
solution we see that we do not find a unique sofutor x, and x,and so we do not find

an unique eigenvectar This is obvious, because from (5.1) we see dyréicat each
eigenvector can be multiplied with a constant fhicl the set of equations still holds.
For instance, let be a constant, then we can write

A(x) = A(x), (5.4)

where now the new eigenvectords. However, the equation in (5.4) is the same as in
(5.1). So each eigenvector may be multiplied/digibg any constant.

It is a standard convention to cho@sguch thatx'x =1.

For instance, if in the example above we chorsel - x, =-5 2. So a solution for the

-5/2
eigenvector i{ 1/ J Now by dividing this vector by the square rootleé sum of

squares of the elements we find

_(-5/2 (5129
x-( 1 j/ 25/4+1—(2/@J.
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It is easy to verify that now it holds'x =1.

For the example above we find for the eigenvalye-2:

{3 33 A )

This gives the equations

5x +5x,=0 ¢
2% -2X%,=0 (2

-1
From (1) we findx, =-x,. So if x, =1 ~ x, =-1, and so the eigenvector;is=( 1 J

EING
Y2

Now if we divide this by\/ﬁ, we find x :[ J,for which it holdsx'x =1.

5.2 Example and MATLAB code

Obtain the eigenvectors and eigenvalues

of matrix A:

A=[3 5;-2 -4] A=
3 5

[X,D]=eig(A) 2 -4

X= D=
0.9285 -0.7071 1 0
-0.3714 0.7071 0 -2
5.3 Exercise

1 2
1. Compute the eigenvalues and eigenvectors ahttax (2 3}

1 2
2: Do the same for the matr[x2 4].

3: Compare the solutions of 1 and 2 with the MATLA&tput.
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5.4 Properties of eigenvectors / eigenvalues

Because in most situations we deal with symmetatrices, like covariance or
correlation matrices, we give here some properntibs;h hold for symmetric matrices.

1: The sum of the eigenvalues of a matrix is etm#he sum of the diagonal elements of
that matrix. (This sum of diagonal elements of darmas also called the trace of a
matrix, often denoted as &().

1 2
Example: the eigenvalues of matnh<=[2 3] are (2+\/§) and (2-\/_5)80 the

sum of the eigenvalues is 4. The trace of mariz indeed 4.

2: The product of the eigenvalues of a ma#tiis equal to the determinant of that matrix.

Example: for the same matriit holds that the product of the eigenvalues is
(2+\/§)(2—\/_5)= 4- 5= - 1 The determinant of matriX is also-1.

Consequence: if one (or more) of a matrix is (aegd, then the determinant is
zero and the matrix is singular.

3: The inner product of the eigenvectors of a masrequal to 0.

1 1
Example: The eigenvectors of matAxare| 1 and| 1 . So the
=@++/5) 5(1‘\@)

2
inner product is:L+%(1— 5)= 0.

4: If we collect the eigenvectors of matAxin a matrixX and the eigenvalues in a
diagonal matrixA, then we can writeAX =XA , whereX'X =I. (Here it is assumed
that an eigenvalue and the corresponding eigenvactan the same column of matrix
A\ andX, respectively).

1 2
Example: LetA = (2 4j,thenx can be written as

-2/5 1W/5 0
Ll/\/E_S 2/\/_5j a”d’\{o 3
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1 2\[-2 1
Then AX :( j N5 1N = 0 545 . Indeed this is equal to
2 4 115 2K/5) (0 1045

_(-2/1V5 1W5)(0 0 (0 545
XA_(l/\/&_s 2/\/_5J(0 3_{0 10A/_'J'

5: If we define for a matri the matrix of eigenvectors and eigenvalesnd A as in
property 4, then we can write in genefak XAX '

This is easy to prove fro'AX =X A and the fact thaK 'X =I. because
multiplying both sides of the equation sign givies tesult.

6: In general it holds for a symmetric matw’ = XAPX '. Remark, this equation also
holds for negative values pf or fractional values gd.

Example: Letp =2, thenA? = (XAX )XAX )=X X X X 'X X .

5.5 Singular value decomposition

Every matrixB(nxp) with n > p, can be written as a product of matrices:

B=KAL' with K'K=I andL'L=l.
K (nxp) are called the left eigenvectorsBfA( pxp) (diagonal) the singular values, and
L (pxp) the right eigenvector3he columns oK are also the first p eigenvectorsBB'
and the columns df are thep eigenvectors oB'B, andA? are the (first p) eigenvalues
B'B andBB', thus

B'B =LA’L' andBB'=KA’K".

B=KAL' is called the singular value decompositadirB.




Matrix Algebra 37

Chapter 6

Application in statistics:
Multiple Regression and
Principal Component Analysis

In this chapter we discuss the basic principlesvofimportant methods in statistics:
Multiple Regression (MR) and Principal Componenthmsis (PCA). These methods are
the basic of a lot of other methods.

6.1 Multiple Regression

Suppose there are scorespovariables and we want to “predict” the scores oe o
variable. Then we can define the following vectaordtrix

y : vector of order(n x 1); often named: criterion variable, dependent vagiab

X : matrix of order(n x m); the first column of this matrix contains only ltke
next columns of this matrix are the scores orniridependent variables, or
predictors

b : vector of regression weights

e : vector of residuals

The regression equation can be written as
y= b +Xxobo+X3bs+ ... +Xbte = Xb+e,
where the vectoy and the matrixX are known, and the vectbrhas to be estimated. A

standard way of solving the vectois by the so-called least squares method. In this
method the sum of squares of the residuals is n@enin This means that we minimize

Zn:qz =e'e
i=1

So, the problem is to minimize

f =e'e=(y- Xb)'(y- Xb).
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This function can be written as

f=y'y-y'Xb-b'X'y +b 'X Xb
zy'y=-2( Xp+b'X X b .

Now we writea'=y'X and A =X 'X , then we have the function to minimize
f=y'y-2a'b+b'Ab.

One way of minimizing this function is by takingetderivatives of this function with
respect to the unknown vectorand equalize these derivatives to zero.

According to the derivative rules as given in thgpaAndix we have:

da'b/ob=a= X'y
and

d(b'Ab)/db =2Ab =2X Xb .
So we have the equation
of /ob=-2X"'y +2X Xb = 0.
From this equation it follows
X'Xb=XYy.

Now if we assume that the vectors of columns asetaf independent vectors, the
determinant ofX 'X is unequal to zero and so we can write for amegé ofb

b=(X'X)X Y.

6.2 Example and MATLAB code

Let matrix beX = andy =

[ = T S SES SN
AU 0N
Do PR NW
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The regression weights in the regression equatierXb +e can then be estimated as

b= (X'X)™X Y. Note that the first regression weighttims constant in all equations.
This weight is called the intercept. We can venibyv

5 15
X'X = .
[1.5 .55}

Furthermore X 'X|=2.75- 2.25= .ESo

o35, 15

And
3
2
1 11 1 1 1. 3
X'y:( ZJ A :( 3 Thusy=16.
2 3 .1 5. 5
.6
il
It follows

5= w0

We write the estimated scores on the dependergblayi as

1 .2 21
1 3 15
1 .3 32
I -.01 -1 0 |[(3) |-3
y=Xb=|1 .1 =| .10{. Now Xv = =
1.1 6 -2 |4 10
1 5 .54
1 -1 -1
1 4 43

For each case in this system we can write
¥ = +b,X,,

whereﬁl is the estimate of the intercept.
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For each of the cases we can write

¥y, =D +x.p,=b+x1.1)= .21
¥, = X0, + X,0,= b+ X ,{1.1)= .32
¥, = X, D+ X, 0,= b+ X {1.1)= .10
¥, = X0, + X, P,=b+x ,{1.1)= .54
Ve = X P, + X P, = b+ X f1.1)= .43

A picture of this regression system can be writen

0.7 1

0.6 -

0.5

0.4 1

0.3

variable Y

0.2 -

0.1 1

variable X

Remarks:

1: The difference betweey andy, are the errors (residuads These are depicted in the
picture as the vertical line segments. In matritation we havee=y -y
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2: The regression is chosen in such a way thatuheof squares of the errors is minimal.
So here we have for the minimum valuefof e'e= Zqz ,and

f=Zq2=(.3—.21)2+(.2— 32§+ (& .10+ (6 54y (4 43 .0

3: To compare this with the output of SPSS we find

Regression
Model Summary
Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .9042 .818 757 9.487E-02
a. Predictors: (Constant), X
ANOVAP
Sum of

Model Squares df Mean Square F Sig.
1 Regression 21 1 21 13.444 .0352

Residual 2.700E-02 9.000E-03

Total .148 4

a. Predictors: (Constant), X

b. Dependent Variable: Y

Remark:

SSregression =(y—Y)'(y—Y);SSresiduak €e=(y-V)'(y-Y);SStotak(y-y)'(y-Vy)

Coefficients?

Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) | -1.00E-02 .099 -.101 .926
X 1.100 .300 .904 3.667 .035

a. Dependent Variable: Y

4: In MATLAB, the regression weights may be obtaimgth:

X=[1.2;1.3;1.1;1 .5;1 .4];

y =1[.3;.2;.1;.6;.4];
b = inv(X"*X)*X"*y

b=
-0.0100
1.1000
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6.3 Principal Component Analysis

Let X be a matrix of scores afsubjects om variables, s has the orde(n x m). We

want to reduce this matrix to, say, one vegtddo we try to find a linear combination of
the columns oK which represents the data in some optimal ways ¢an be written as

Xb =y.
Interpretation of this model:
--- y is an weighted sum of variabl¥s(means 0)

--- the vectow is unknown, in opposite to the regression model.

We have chosen here that the means of the colufXsue zero. SA'X =0"'. Then the
sum of squares ofis y'y and the variance ig'y/n.

Now we look for the weights such that the variance gfis maximal. This means that
we look for ay such thal discriminates optimally between subjects.

The function to be optimized is
f=y'y=b'X"'Xb.
Because this function is unbounded, we have t@pastriction orb. The restriction is

b'b =1. By defining A =X "X ,we find by the result given in the Appendix, thas the
eigenvector oA corresponding to the largest eigenvalué of

6.4 Example and MATLAB code
2 -1

0O 2 i . . )
Let X = ol We will reduce this matrix to one column vecterdiscussed above.
-1 -1

It turned out that we have to optimife=b'X'Xb, under the restriction thdt'b =1.

Therefore we have to find the eigenvectoXofX corresponding to the largest
eigenvalue ofX'X . We find

2 -1

2 0 -1 -1} 0 2 6 -
X'X= = .
-1 2 0 -1)/-1 O -1 6

-1 -1
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For the eigenvalues we have to solve

6-1 -1
=36-124+4°-1=0
-1 6-4
This gives the solutiodl =7 andA= 5
For the eigenvector corresponding to the largedraialue we have to solve

(6-7)~b, =0~ b,=-b,.

1
2 |
So the solution dlf is b = 1 . This means that the optimais
2
3
2 -1\ 1 *f; 21
. 0 22| |—=| |-14
Xb=y - 1 0 \/51 = J2|.= - (see bends in picture next page)
1 -1\ 2) |2 00
\/E A
0
3
V2
-2
Remark 1'§/'§/=(i -2 -1 OJ J2 | =7, which is indeed the largest eigenvalue
NI R
V2
0

of X'X.
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Remark 2: A picture of this PCA is.

2m

variable X2

29 -
variable X1

N
=S

3: In MATLAB, we may obtain the

eigenvalues with:

X=[2-1;02;-10;-1-1];
eig(X"*X)

ans =
5.0000
7.0000

44
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6.5 Exercises

1. Letthe scores of 5 subjects on two independembigs be given in matrix

, and the scores on the dependent variable be qwattory =

x

1
N
AN O W R
g wh PN

la: Carry out a multiple regression by estimathmgregression weights. It holds
b=(X'X)'XYy.

1b: Make a plot of the second columnXofind the observed and predictescores.
Interpret the results; show what the residualsasacecompute the sum of squares of
the residuals.

1c: Compare the results in 1a and 1b with the SRB3ut.

1 -1
2 1
2. The scores of 5 subjects on two variables are givamatrix X =| 0 0 |.
-2 2
-1 -2

2a: Carry out a Principal Component Analysis witie @rincipal component.
2b: Make a plot of the first principal componentahe two observed variables.
Interpret the results.
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Appendix
X
1: Let f =a'x, then we can writef =(a, a, a,)| X, |=ax,+ax,+ax, Nowit
X3
holds
of 10x, = a,
of 10x, =a,
of /9x, = a,

In vector/matrix notation we can write this as

of /ox, a
of lox=|0df /ox, |=|a, |=a
of /0x, a,

2: Let f =x"'Ax, whereA is a symmetric matrix, then we can write

a, ap,|(x
F=0 XZ)( 1 ZJ( 1}""11)‘5*32?‘2‘2*312‘%#3 X Faxt2a xx ra %,
a21 a22 X2

becausé\ is a symmetric matrix. Now it holds

of /0x, =2a,,x,+2a,X,
of 10x, = 2a,,X,+ 2a,X,

In vector/matrix notation we can write this as

of ox = 2[6‘“ a”j[xl} =2AX
a21 a22 X2
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3: Optimizing the functionf =b'Ab under the restrictiob'b =1 can be done by
optimizing the following function (this function alled the Lagrange function):

f*=b'Ab-A('b-1),

where A is called the Lagrange multiplieA ¢0).
Taking derivatives of this function with respecttandA, and equalizing to zero gives

ot /db=2Ab-2ib =0 (A1)
o /aA=b'b-1=0 (A.2)

From (A.1) it follows Ab = Ab. In addition with (A.2) it follows thab is an eigenvector
of A, such that the sum of squaresa$ equal to 1.

Because we optimizé =b'Ab =b'Ab = Ab'b = A, the optimum of is equal to the
largest eigenvalue & andb is the corresponding eigenvector.

4: If we have two vectons andy, then geometrically speaking there is an argjle
between the two vectors. It can be proven thattisene of this angle is

X'y
C0Sl = ——— .
VX' XAY'Y
Note thatvx'x and,/y Yy are the lengths of the vectorandy, respectively.

In addition, ifx andy have means zero (afx=0 andu'y=0), then coé=cor(x,y).
Furthermore ik andy are standardized, i.e. vectors with mean zero andnce 1 (or
x'x/n=1 andy'y/n=1), then cog=cor,y)=x"y/n.



